Jump rate; Molecular dynamics simulation; Surface diffusion; Velocity correlation function
Abstract :
[en] The aim of this paper is to study the diffusion of Cu adatom on Ag (110) by using the molecular dynamics simulation in the framework of the embedded atom method (EAM) as model of atomic interaction. Our simulation results predict that several diffusion processes such as simple jump, long jump and exchange mechanism may occur in the same system. The static barrier is calculated for each process by the drag method. The dynamic activation energy calculated from the Arrhenius law is in a good agreement with the static barrier. The presence of double jump is studied using velocity correlation function showing small contributions in diffusion process. Implications of these findings are discussed in more details.
Disciplines :
Materials science & engineering
Author, co-author :
Sbiaai, K.; Laboratoire de la Physique de la Matière Condensée, Université Chouaïb Doukkali, Morocco, Laboratoire de la Physique de la Matière Condensée, Université de Liège, Belgium
Boughaleb, Y.; Laboratoire de la Physique de la Matière Condensée, Université Chouaïb Doukkali, Morocco, Laboratoire la Physique de la Matière Condensée, Université Hassan II Mohammedia, Morocco, Hassan II Academy of Sciences and Technology, Rabat, Morocco
Raty, Jean-Yves ; Université de Liège - ULiège > Département de physique > Physique de la matière condensée
Hajjaji, A.; Ecole Nationale des Sciences Appliquées (ENSAJ), Université Chouaïb Doukkali, Morocco
Mazroui, M.; Laboratoire la Physique de la Matière Condensée, Université Hassan II Mohammedia, Morocco
Kara, A.; Department of Physics, University of Central Florida, United States
Language :
English
Title :
Numerical study of atomic diffusion processes of copper on silver (110) surface: Cu/Ag (110)
Publication date :
2012
Journal title :
Journal of Optoelectronics and Advanced Materials
ISSN :
1454-4164
eISSN :
1841-7132
Publisher :
National Institute of Research and Development for Optoelectronics, Romania
D. B. Dougherty, W. Jin, W. G. Cullen, J. E. Reutt-Robey and S. W. Robey. J. Phys. Chem. C, 112, 20334 (2008).
Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y. Ogbazghi, Rui Feng, Zhenting Dai, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, and Walt A. de Heer, J. Phys. Chem. B. 108, 19912 (2004).
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, R. S. Ruoff, Science 324, 1312 (2009).
K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J-H. Ah, P. Kim, J-Y. Choi, B. H. Hong, Nature 457, 706 (2009).
S. Bae, H. Kim, Y. Lee, X. Xu, J-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y.I. Song, Y-J. Kim, K. S. Kim, B. Özyilmaz, J-H. Ahn, B. H. Hong and S. Iijima, Nat. Nanotech., Nat. Nanotech. DOI, 10.1038/nnano.132 (2010).
M. P. Levendorf, C. S. Ruiz-Vargas, S. Garg, J. Park, Nano Letters 9, 4479 (2009).
C. H. Lui, L. Liu, K. F. Mak, G. W. Flynn, T. F. Heinz., Nature 462, 339 (2009).
F. Hontinfinde, A. Videcoq, F. Montalenti, R. Ferrando, Chemical Physics Letters 398, 50 (2004).
F. Baletto, J.P.K. Doye, R. Ferrando, C. Mottet, Surface Science, 532-535, 898 (2003).