cyanolichen; molecular systematics; morphospecies; Nostoc; phylogeny; species delimitation; specificity; symbiosis
Abstract :
[en] Closely related lichen-forming fungal species circumscribed using phenotypic
traits (morphospecies) do not always align well with phylogenetic inferences based on
molecular data. Using multilocus data obtained from a worldwide sampling, we inferred
phylogenetic relationships among five currently accepted morphospecies of Peltigera section
Peltidea (P. aphthosa group). Monophyletic circumscription of all currently recognized
morphospecies (P. britannica, P. chionophila, P. frippii and P. malacea) except P. aphthosa,
which contained P. britannica, was confirmed with high bootstrap support. Following their
re-delimitation using bGMYC and Structurama, BPP validated 14 putative species including
nine previously unrecognized potential species (five within P. malacea, five within
P. aphthosa, and two within P. britannica). Because none of the undescribed potential
species are corroborated morphologically, chemically, geographically or ecologically, we
concluded that these monophyletic entities represent intraspecific phylogenetic structure,
and, therefore, should not be recognized as new species. Cyanobionts associated with
Peltidea mycobionts (51 individuals) represented 22 unique rbcLX haplotypes from five
phylogroups in Clade II subclades 2 and 3. With rare exceptions, Nostoc taxa involved in
trimembered and bimembered associations are phylogenetically closely related (subclade
2) or identical, suggesting a mostly shared cyanobiont pool with infrequent switches. Based
on a broad geographical sampling, we confirm a high specificity of Nostoc subclade 2 with
their mycobionts, including a mutualistically exclusive association between phylogroup III
and specific lineages of P. malacea
Magain, Nicolas ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Pardo de la Hoz, Carlos; Duke University
Niu, Dongling; Ningxia University
Goward, Trevor; University of British Columbia - UBC
Sérusiaux, Emmanuël ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Lutzoni, Francois; Duke University
Language :
English
Title :
Species in section Peltidea (aphthosa group) of the genus Peltigera remain cryptic after molecular phylogenetic revision
Armaleo, D. & Clerc, P. 1991. Lichen chimeras: DNA analysis suggests that one fungus forms two morphotypes. Experimental Mycology 15: 1-10.
Bialonska, D. & Dayan, F. E. 2005. Chemistry of the lichen Hypogymnia physodes transplanted to an industrial region. Journal of Chemical Ecology 31: 2975-2991.
Brodo, I. M. & Richardson, D. H. S. 1978. Chimeroid associations in the genus Peltigera. Lichenologist 10: 157-170.
Brodo, I., Sharnoff, S. D. & Sharnoff, S. 2001. Lichens of North America. Yale University Press, New Haven, London.
Calcott, M. J., Ackerly, D. F., Knight, A., Keyzers, R. & Owen, J. G. 2018. Secondary metabolism in the lichen symbiosis. Chemical Society Reviews 47: 1730-1760.
Chagnon, P. L., Magain, N., Miadlikowska, J. & Lutzoni, F. 2018. Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia 187: 767-782.
Culberson, C. F., Culberson, W. L. & Johnson, A. 1977. Correlations between secondary-product chemistry and ecogeography in the Ramalina siliquosa group (lichens). Plant Systematics and Evolution 127: 191-200.
Culberson, C. F., Culberson, W. L. & Johnson, A. 1981. A standardized TLC analysis of ß-orcinol depsidones. Bryologist 84: 16-29.
Da Silva, R., Peloso, P. L. V., Sturaro, M. J., Veneza, I., Sampaio, I., Schneider, H. & Grazielle, G. 2018. Comparative analyses of species delimitation methods with molecular data in snappers (Perciformes: Lutjaninae). Mitochondrial DNA Part A 29: 1108-1114.
Drummond, A. J. & Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.
Ertz, D., Guzow-Krzeminska, B., Thor, G., Łubek, A. & Kukwa, M. 2018. Photobiont switching causes changes in the reproduction strategy and phenotypic dimorphism in the Arthoniomycetes. Scientific Reports 8: 4952
Fedorowitz, K., Kaasalainen, U. & Rikkinen, J. 2012. Geographic mosaic of symbiont selectivity in a genus of epiphytic cyanolichens. Ecology and Evolution 2: 2291-2303.
Funck, H. C. 1827. Kryptogamische Gewächse des Fichtelgebirg's. Vol. 33, p. 5, Hof and Leipzig.
Goffinet, B. & Bayer, R. J. 1997. Characterization of mycobionts of photomorph pairs in the Peltigerineae (Lichenized Ascomycetes) based on Internal Transcribed Spacer sequences of the nuclear ribosomal DNA. Fungal Genetics and Biology 21: 228-237.
Goffinet, B. & Miadlikowska, J. 1999. Peltigera phyllidiosa (Peltigeraceae, Ascomycotina), a new species from the southern Appalachians corroborated by its sequences. Lichenologist 31: 247-256.
Goffinet, B., Miadlikowska, J. & Goward, T. 2003. Phylogenetic inferences based on nrDNA sequences support five morphospecies within the Peltigera didactyla complex (lichenized Ascomycota). Bryologist 106: 349-364.
Goward, T. & Goffinet, B. 2000. Peltigera chionophila, a new lichen (Ascomycetes) from the Western Cordillera of North America. Bryologist 103: 493-498.
Goward, T., Goffinet, B. & Vitikainen, O. 1995. Synopsis of the genus Peltigera (Lichenes, Ascomycotina) in British Columbia, with a key to the North American species. Canadian Journal of Botany 73: 91-111.
Gueidan, C. & Lendemer, J. C. 2015. Molecular data confirm morphological and ecological plasticity within the North-American endemic lichen Willeya diffractella (Verrucariaceae). Systematic Botany 40: 369-375.
Han, L.-F., Zhang, Y.-Y. & Guo, S.-Y. 2013. Peltigera wulingensis, a new lichen (Ascomycota) from north China. Lichenologist 45: 329-336.
Han, L.-F., Zheng, T.-X. & Guo, S.-Y. 2015. A new species in the lichen genus Peltigera from northern China based on morphology and DNA sequence data. Bryologist 118: 46-53.
Holtan-Hartwig, J. 1988. Two new species of Peltigera. Lichenologist 20: 11-17.
Holtan-Hartwig, J. 1993. The lichen genus Peltigera, exclusive of the P. canina group, in Norway. Sommerfeltia 15: 1-77.
Huelsenbeck, J. P., Andolfatto, P. & Huelsenbeck, E. T. 2011. Structurama: Bayesian inference of population structure. Evolutionary bioinformatics online 7: 55.
Jüriado, I., Kaasalainen, U. & Rikkinen, J. 2017. Specialist taxa restricted to threatened habitats contribute significantly to the regional diversity of Peltigera (Lecanoromycetes, Ascomycota) in Estonia. Fungal Ecology 30: 76-87.
Kirka, P. M., Divakar, P. K., Crespo, A., Mugambi, G., Orock, E. A., Leavitt, S. D., Gatheri, G. W. & Lumbsch, H. T. 2016. Phylogenetic studies uncover a predominantly African lineage in a widely distributed lichen-forming fungal species. MycoKeys 14: 1-16.
Kotarska, A. 1999. Rewizja rodzaju Peltigera z terenu prowincji Quebec w Kanadzie. Praca magisterska, Uniwersytet Gdański, Gdańsk.
Lanfear, R., Calcott, B., Ho S. Y. & Guindon, S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695-1701.
Leavitt, S. D., Johnson, L. A. & St. Clair, L. L. 2011a. Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus Xanthoparmelia (Parmeliaceae, Ascomycota) in western North America. American Journal of Botany 98: 75-188.
Leavitt, S. D., Johnson, L. A., Goward, T. & St. Clair, L. L. 2011b. Species delimitation in taxonomically difficult lichen-forming fungi: An example from morphologically and chemically diverse Xanthoparmelia (Parmeliaceae) in North America. Molecular Phylogenetics and Evolution 60: 317-322.
Leavitt, S., Esslinger, T. L., Divakar, P. K., Crespo, A. & Lumbsch, T. 2016. Hidden diversity before our eyes: delimiting and describing cryptic lichen-forming fungal species in camouflage lichens (Parmeliaceae, Ascomycota). Fungal Biology 120: 1374-1391.
Leavitt, S. D., Esslinger, T. L., Spribille, T., Divakar, P. K. & Lumbsch, H. T. 2013. Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Molecular Phylogenetics and Evolution 66: 138-152.
Leavitt, S. D., Fankhauser, J. D., Leavitt, D. H., Porter, L. D., Johnson, L. A. & St. Clair, L. L. 2011c. Complex patterns of speciation in cosmopolitan "rock posy" lichens-discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Molecular Phylogenetics and Evolution 59: 587-602.
Lendemer, J. C. & O'Brien, H. 2011. How do you reconcile molecular and non-molecular datasets? A case study where new molecular data prompts a revision of Peltigera hydrothyria s.l. in North America and the recognition of two species. Opuscula Philolichenum 9: 99-110.
Li, L. A. & Tabita, L. R. 1997. Maximum activity of recombinant ribulose 1, 5 bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene. Journal of Bacteriology 179: 3793-3796.
Linnaeus, C. 1753. Species Plantarum. Stockholm, pp. 1200.
Lu, J., Magain, N., Miadlikowska, J., Coyle, J. R., Truong, C. & Lutzoni, F. 2018. Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genus Peltigera. American Journal of Botany 105: 1198-1211.
Lumbsch, H. T., Nelsen, M. P. & Lücking, R. 2008. The phylogenetic position of Haematommataceae (Lecanorales, Ascomycota), with notes on secondary chemistry and species delimitation. Nova Hedwigia 86: 105-114.
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. 2000. Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Systematic Biology 49: 628-651.
Lücking, R., Del Prado, R., Lumbsch, H. T., Will-Wolf, S., Aptroot, A., Sipman, H. J. M., Umaña, L. & Chaves, J. L. 2008. Phylogenetic patterns of morphological and chemical characters and reproductive mode in the Heterodermia obscurata group in Costa Rica (Ascomycota, Physciaceae). Systematics and Biodiversity 6: 31-41.
Lücking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P. M., Bungartz, F., Moncada, B., Yánez-Ayabaca, A., Chaves, J. L., Coca, L. F. & Lawrey, J. D. 2014. A single macrolichen constitutes hundreds of unrecognized species. Proceedings of the National Academy of Sciences USA 111: 11091-11096.
Maddison, D. & Maddison, W. 2005. MacClade v. 4.08. Sinauer Association.
Magain, N. 2018. PLexus, a PERL package to handle DNA matrices. Available from the author. https://github.com/NicolasMagain/ Plexus
Magain, N. & Sérusiaux, E. 2014. Do photobiont switch and cephalodia emancipation act as evolutionary rivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLoS ONE 9(2): e89876.
Magain, N., Goffinet, B. and Sérusiaux, E. 2012. Further photomorphs in the lichen family Lobariaceae from Reunion (Mascarene archipelago) with notes on the phylogeny of Dendriscocaulon cyanomorphs. Bryologist 115: 243-254.
Magain, N., Miadlikowska, J., Goffinet, B., Sérusiaux, E. and Lutzoni, F. 2017a. Macroevolution of specificity in cyanolichens of the genus Peltigera section Polydactylon (Lecanoromycetes, Ascomycota). Systematic Biology 66: 74-99.
Magain, N., Sérusiaux, E., Zhurbenko, M. P., Lutzoni, F. & Miadlikowska, J. 2016. Disentangling the Peltigera polydactylon species complex by recognizing two new taxa, P. polydactylon subsp. udeghe and P. seneca. Herzogia 29: 514-528.
Magain, N., Truong, C., Goward, T., Niu, D., Goffinet, B., Sérusiaux, E., Vitikainen, O., Lutzoni, F. & Miadlikowska, J. 2018. Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in Peltigera section Peltigera (lichenized Ascomycota: Lecanoromycetes). Taxon 67: 836-870.
Magain, N., Miadlikowska, J., Mueller, O., Gajdeczka, M., Truong, C., Salamov, A., Dubchak, I., Grigoriev, I. V., Goffinet, B., Sérusiaux, E. & Lutzoni, F. 2017b. Conserved genomic collinearity as a source of broadly applicable, fast evolving, markers to resolve species complexes: A case study using the lichen-forming genus Peltigera section Polydactylon. Molecular Phylogenetics and Evolution 117: 10-29.
Martínez, I., Burgaz, A. R., Vitikainen, O. & Escudero, A. 2003. Distribution patterns in the genus Peltigera Willd. Lichenologist 35: 301-323.
Manoharan-Basil, S. S., Miadlikowska, J., Goward, T., Andresson, O. S. & Vivian, P. W. 2016. Peltigera islandica, a new cyanolichen species in section Peltigera. Lichenologist 48: 451-467.
Miadlikowska, J. 1998. Blue-green morphotype of Peltigera venosa in Poland. Graphis Scripta 9: 21-22.
Miadlikowska, J. & Lutzoni, F. 2000. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. International Journal of Plant Sciences 161: 925-958.
Miadlikowska, J. & Lutzoni, F. 2004. Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. American Journal of Botany 91: 449-464.
Miadlikowska, J., Lutzoni, F., Goward, T., Zoller, S. & Posada, D. 2003. New approach to an old problem: incorporating signal from gap-rich regions of ITS and rDNA large subunit into phylogenetic analyses to resolve the Peltigera canina species complex. Mycologia 95: 1181-1203.
Miadlikowska, J., Richardson, D., Magain, N., Ball, B., Anderson, F., Cameron, R., Lendemer, J., Truong, C. & Lutzoni, F. 2014. Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes). American Journal of Botany 101: 1141-1156.
Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, IEEE, p. 1-8.
Monacell, J. T. & Carbone, I. 2014. Mobyle SNAP Workbench: A webbased analysis portal for population genetics and evolutionary genomics. Bioinformatics 33: 1160-1168.
Moncada, B., Coca, L. F. & Lücking, R. 2013. Neotropical members of Sticta (lichenized Ascomycota: Lobariaceae) forming photosymbiodemes, with the description of seven new species. Bryologist 116: 169-200.
Nash III, T. H. & Elix, J. A. 2004. Xanthoparmelia. In: Nash III, T. H., Ryan, B. D., Diederich, P., Gries, C. & Bungartz, F. (eds), Lichen Flora of the Greater Sonoran Desert Region, Vol. 2, pp. 566-605. Lichens Unlimited, Arizona State University, Tempe, Arizona.
Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
O'Brien, H. E., Miadlikowska, J. & Lutzoni, F. 2009. Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus Peltigera. Evolution 63: 2076-2086.
O'Brien, H. E., Miadlikowska, J. & Lutzoni, F. 2013. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytologist 198: 557-566.
Orange, A., James, P. W. & White, F. J. 2001. Microchemical methods for the identification of lichens. British Lichen Society.
Otálora, M. A. G., Martínez, I., O'Brien, H., Molina, M. C., Aragón, G. & Lutzoni, F. 2010. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Molecular Phylogenetics and Evolution 56: 1089-1095.
Ott, S. 1988. Photosymbiodemes and their development in Peltigera venosa. Lichenologist 20: 361-368.
Papong, K. & Lumbsch, H. T. 2011. A taxonomic survey of Lecanora sensu stricto in Thailand (Lecanoraceae; Ascomycota). Lichenologist 43: 299-320.
Reid, N. M. & Carstens, B. C. 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed yule-coalescent model. BMC Evolutionary Biology 12: 196.
Rodríguez, F. J., Oliver, J. L., Marín, A. & Medina, J. R. 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485-501.
Ryan, B. D., Lumbsch, H. T., Messuti, M. I., Printzen, C., Śliwa, L. & Nash III, T. H. 2004. Lecanora. In: Nash III, T. H., Ryan, B. D., Diederich, P., Gries, C. & Bungartz, F. (eds), Lichen Flora of the Greater Sonoran Desert Region, Vol. 2, pp. 176-286. Lichens Unlimited, Arizona State University, Tempe, Arizona.
Saag, L., Mark, K., Saag, A. & Randlane, T. 2014. Species delimitation in the lichenized fungal genus Vulpicida (Parmeliaceae, Ascomycota) using gene concatenation and coalescent-based species tree approaches. American Journal of Botany 101: 2169-2182.
Schmitt, I. & Lumbsch, H. T. 2004. Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. Molecular Phylogentics and Evolution 33: 3-55.
Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., Chen, W. & Fungal Barcoding Consortium. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences USA 109: 6241-6246.
Sérusiaux, E., Goffinet, B., Miadlikowska, J. & Vitikainen, O. 2009. Taxonomy, phylogeny and biogeography of the the lichen genus Peltigera in Papua New Guinea. Fungal Diversity 38: 185-224.
Singh, G., Dal Grande, F., Divakar, P. K., Otte, J., Leavitt, S. D., Szczepanska, K., Crespo, A., Rico, V. J., Aptroot, A., da Silva Cáceres, M. E., Lumbsch, H. T. & Schmitt, I. 2015. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLoS ONE 10(5): e0124625.
Staiger, B. 2002. Die Flechtenfamilie Graphidaceae. Studien in Richtung einer natürlicheren Gliederung. Bibliotheca Lichenologica 85: 1-526.
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688-2690.
Stamatakis, A., Hoover, P. & Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology 57: 758-771.
Stenroos, S., Stocker-Wörgötter, E., Yoshimura, I., Myllys, L., Thell, A. & Hyvönen, J. 2003. Culture experiments and DNA sequence data confirm the identity of Lobaria photomorphs. Canadian Journal of Botany 81: 232-247.
Stocker-Wörgötter, E. 1995. Experimental cultivation of lichens and lichen symbionts. Canadian Journal of Botany 73(S1): S579-S589.
Stocker-Wörgötter, E. & Türk, R. 1994. Artificial resynthesis of the photosymbiodeme Peltigera leucophlebia under laboratory conditions. Cryptogamic Botany 4: 300-308.
Tehler, A. & Källersjö, M. 2001. Parmeliopsis ambigua and P. hyperopta (Parmeliaceae): species or chemotypes? Lichenologist 33: 403-408.
Toni, S. A & Piercey-Normore, M. D. 2013. Chemical ecology of lichens and species composition of cryptogams among three boreal habitats in eastern Manitoba. Botany 91: 53-61.
Tønsberg, T. & Holtan-Hartwig, J. 1983. Phycotype pairs in Nephroma, Peltigera and Lobaria in Norway. Nordic Journal of Botany 3: 681-688.
Vitikainen, O. 1994. Taxonomic revision of Peltigera (lichenized Ascomycotina) in Europe. Acta Botanica Fennica 152: 1-96.
Wei, X, McCune, B, Lumbsch, H. T., Li, H., Leavitt, S., Yamamoto, Y, Tchabanenko, S. & Wei, J. 2016. Limitations of species delimitation based on phylogenetic analyses: A case study in the Hypogymnia hypotrypa group (Parmeliaceae, Ascomycota). PLoS ONE 11(11): e0163664.
Yang, Z. & Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences USA 107: 9264-9269.