Boisson, Sylvain ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Faucon, Michel-Pierre; Hydrogeochimical Interactions Soil-Environment (HydrISE) Unit, Polytechnic Institute LaSalle Beauvais (ISAB-IGAL), 15 rue Pierre Waguet, Beauvais, France
Le Stradic, Soizig ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Lange, B.; Hydrogeochimical Interactions Soil-Environment (HydrISE) Unit, Polytechnic Institute LaSalle Beauvais (ISAB-IGAL), 15 rue Pierre Waguet, Beauvais, France, Laboratory of Plant Ecology and Biogeochemistry, Université Libre Bruxelles, CP 244, Boulevard du Triomphe, Bruxelles, Belgium
Verbruggen, N.; Laboratory of Plant Physiology and Molecular Genetics, Université Libre de Bruxelles, CP 244, Boulevard du Triomphe, Bruxelles, Belgium
Garin, O.; Biodiversity and Landscape Unit, BIOSE - Biosystem Engineering Department, Gembloux Agro-Bio Tech, University of Liege, 2 Passage des Déportés, Gembloux, Belgium
Tshomba Wetshy, A.; Ecology, Restoration Ecology and Landscape Research Unit, Faculty of Agronomy, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Democratic Republic Congo
Seleck, Maxime ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Masengo Kalengo, W.; Ecology, Restoration Ecology and Landscape Research Unit, Faculty of Agronomy, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Democratic Republic Congo
Ngoy Shutcha, Mylor; Ecology, Restoration Ecology and Landscape Research Unit, Faculty of Agronomy, University of Lubumbashi, Route Kasapa, Campus Universitaire, Lubumbashi, Democratic Republic Congo
Mahy, Grégory ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Language :
English
Title :
Specialized edaphic niches of threatened copper endemic plant species in the D.R. Congo: implications for ex situ conservation
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aikaike H (1987) Factor analysis and AIC. Psychopharmacology 52:317–332
Anacker BL (2014) The nature of serpentine endemism. Am J Bot 101:219–224. doi:10.3732/ajb.1300349
Antonovics J, Bradshaw AD, Turner RG (1971) Heavy metal tolerance in plants. Adv Ecol Res 7:1–85
Baker AJM (1987) Metal Tolerance. New Phytol 106:93–111. doi:10.1111/j.1469-8137.1987.tb04685.x
Bizoux JP, Daïnou K, Raspé O, Lutts S, Mahy G (2008) Fitness and genetic variation of Viola calaminaria, an endemic metallophyte: implications of population structure and history. Plant Biol 10:684–693. doi:10.1111/j.1438-8677.2008.00077.x
Boisson S, Collignon J, Langunu S, Lebrun J, Shutcha MN, Mahy G (2015) Concilier la phytostabilisation des sols pollués avec la conservation de la flore cupro-cobalticole dans la région de Lubumbashi (R.D. Congo): une stratégie nouvelle pour valoriser les écosystèmes extrêmes. In: Bogart J, Halleux J-M (eds) Territoires périurbains: Développement, enjeux et perspectives dans les pays du Sud. Presses Agronomiques de Gembloux, Gembloux, pp. 127–138
Boisson S, Ortmans W, Maréchal J, Majerus M, Mahy G, Arnaud M (2016a) No copper required for germination of an endangered endemic species from the Katangan Copperbelt (Katanga, DR Congo): Diplolophium marthozianum
Boisson S, Le Stradic S, Collignon J, Séleck M, Malaisse F, Ngoy Shutcha M, Faucon MP, Mahy G (2016b) Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in south D. R. Congo: Poaceae candidates for phytostabilisation. Environ Sci Pollut Res 23:13693–13705. doi:10.1007/s11356-015-5442-2
Boisson S, Le Stradic S, Commans M, Dumont A, Leclerc N, Thomas C, Mahy G (2016c) Copper tolerance of three crotalaria species from southeastern D. R. Congo at the early development stage. Biotechnol Agron Soc Environ 20:151–160
Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176. doi:10.1007/s11104-007-9240-6
Boyd R, Rajakaruna N (2013) Heavy metal tolerance. In: Gibson D (ed) Oxford bibliographies in ecology. Oxford University Press, New York, pp. 1–24
Brooks R (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, UK
Brooks RR, Malaisse F (1990) Metal-enriched sites in south central africa. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press, Inc, New York, pp. 53–71
Chipeng FK, Hermans C, Colinet G, Faucon M-P, Ngongo M, Meerts P, Verbruggen N (2010) Copper tolerance in the cuprophyte Haumaniastrum katangense (S. Moore) P.A. Duvign. & Plancke. Plant Soil 328:235–244. doi:10.1007/s11104-009-0105-z
Di Salvatore M, Carafa AM, Carratù G (2008) Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere 73(9):1461–1464
Duvigneaud P, Denaeyer-De Smet S (1963) Etudes sur la végétation du Katanga et de ses sols métallifères. Communication n°7 Cuivre et végétation au Katanga. Bull la Société R Bot Belgique 96:93–231
Eriksson O (2002) Ontogenetic niche shifts and their implications for recruitment in three clonal Vaccinium shrubs: Vaccinium myrtillus, Vaccinium vitis-idaea, and Vaccinium oxycoccos. Can J Bot 80:635–641. doi:10.1139/B02-044
Escarré J, Lefèbvre C, Frérot H, Mahieu S, Noret N (2013) Metal concentration and metal mass of metallicolous, non metallicolous and serpentine Noccaea Caerulescens populations, cultivated in different growth media. Plant Soil 370:197–221. doi:10.1007/s11104-013-1618-z
Faucon M-P, Meersseman A, Shutcha MN, Mahy G, Luhembwe MN, Malaisse F, Meerts P (2010) Copper endemism in the Congolese flora: a database of copper affinity and conservational value of cuprophytes. Plant Ecol Evol 143:5–18. doi:10.5091/plecevo.2010.411
Faucon M-P, Parmentier I, Colinet G, Mahy G, Ngongo Luhembwe M, Meerts P (2011) May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restor Ecol 19:333–343. doi:10.1111/j.1526-100X.2009.00585.x
Faucon M-P, Chipeng F, Verbruggen N, Mahy G, Colinet G, Shutcha M, Pourret O, Meerts P (2012a) Copper tolerance and accumulation in two cuprophytes of south Central Africa: Crepidorhopalon perennis and C. tenuis (Linderniaceae). Environ Exp Bot 84:11–16. doi:10.1016/j.envexpbot.2012.04.012
Faucon M-P, Tshilong BM, Van RF, Meerts P, Decocq G, Mahy G (2012b) Ecology and hybridization potential of two sympatric metallophytes, the narrow endemic Crepidorhopalon perennis (Linderniaceae) and its more widespread congener. Biotropica 44:454–462
Faucon MP, Le Stradic S, Boisson S, EI w I, Séleck M, Lange B, Guillaume D, MN S, Pourret O, Meerts P, Mahy G (2016) Implication of plant-soil relationships for conservation and restoration of copper-cobalt ecosystems. Plant Soil 403:153–165. doi:10.1007/s11104-015-2745-5
Fones H, Davis C a R, Rico A, Fang F, Smith JAC, Preston GM (2010) Metal hyperaccumulation armors plants against disease. PLoS Pathog 6:1–13. doi:10.1371/journal.ppat.1001093
François A (1973) L’extrémité occidentale de l’Arc Cuprifère Shabien. Etude géologique-Département de géologie de la Gécamines, Likasi (République du Zaire)
Furini A (ed) (2012) Plants and heavy metals. Springer Netherlands, Dordrecht
Gankin R, Major J (1964) Arctostaphylos myrtifolia, its biology and relationship to the problem of endemism. Ecotoxicology 45:792–808
Gégout J-C, Pierrat J-C (1998) L’autécologie des espèces végétales: Une approche par régression non paramétrique. Ecotoxicology 29:473–482
Ghasemi R, Chavoshi ZZ, Boyd RS, Rajakaruna N (2014) A preliminary study of the role of nickel in enhancing fl owering of the nickel hyperaccumulating plant Alyssum inflatum Nyár. (Brassicaceae). South African J Bot 92:47–52. doi:10.1016/j.sajb.2014.01.015
Godefroid S, Van de VA, Massengo Kalenga W, Handjila Minengo G, Rose C, Ngongo Luhembwe M, Vanderborght T, Mahy G (2013) Germination capacity and seed storage behaviour of threatened metallophytes from the Katanga copper belt (DR Congo): implications for ex situ conservation. Plant Ecol Evol 146:183–192. doi:10.5091/plecevo.2013.745
Harrison SP, Rajakaruna N (2011) Serpentine: the evolution and ecology of a model system. University of California Press, Berkeley
Hastie T, Tibshirani R (1986) Generalized additive models. Stat Sci 1:297–318
Hörger AC, Fones HN, Preston GM (2013) The current status of the elemental defense hypothesis in relation to pathogens. Front Plant Sci 4:395. doi:10.3389/fpls.2013.00395
Ilunga wa Ilunga E, Séleck M, Colinet G, Meerts P, Mahy G (2013) Small-scale diversity of plant communities and distribution of species niches on a copper rock outcrop in upper Katanga, DR Congo. Plant Ecol Evol 146:173–182. doi:10.5091/plecevo.2013.816
Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364. doi:10.1016/j.jtemb.2005.02.006
Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534. doi:10.1146/annurev-arplant-042809-112156
Kruckeberg AR (1986) An essay: the stimulus of unusual geologies for plant speciation. Syst Bot 11:455. doi:10.2307/2419082
Kruckeberg AR, Kruckeberg A (1990) Endemic metallophytes: their taxonomic, genetic and evolutionary attributes. In: Shaw J (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, New York, pp. 301–312
Kruckeberg AR, Rabinowitz D (1985) Biological aspects of endemism in higher plants. Annu Rev Ecol Syst 16:447–479. doi:10.1146/annurev.es.16.110185.002311
Lakanen E, Erviö R (1971) A comparison of eight extractants for the determination of plant available micronutrients in soil. Acta Agral Fenn 123:223–232
Leteinturier B (2002) Evaluation du potential phytocénotique des gisements cupriferes d’Afrique centro-australe en vue de la phytoremédiation de sites pollués par l’activité. PHD Thesis. p 358
Leteinturier B, Baker AJM, Malaisse F (1999) Early stages of natural revegetation of metalliferous mine workings in south Central Africa: a preliminary survey. Biotechnol Agron Soc Environ 3:28–41
Macnair MR (1993) The genetics of metal tolerance in vascular plants. New Phytol 124:541–559. doi:10.1111/j.1469-8137.1993.tb03846.x
Macnair M, Gardner M (1998) The evolution of edaphic endemics. In: Howard D, Berlocher S (eds) Endless Forms. Species and Speciation. Oxford University Press, New York, pp. 157–171
Macnair M, Tilstone G, Smith S (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N (ed) phytoremediation of contaminated soil and water. CRC Press Inc, p. 408
Malaisse F, Baker AJM, Ruelle S (1999) Diversity of plant communities and leaf heavy metal content at Luiswishi copper/cobalt mineralization, upper Katanga, Dem. Rep. Congo. Biotechnol Agron Soc Environ 3:104–114
Margesin R, Schinner F (2005) Manual for soil analysis - monitoring and assessing soil bioremediation: monitoring and assessing soil bioremediation. Springer
Mateos-Naranjo E, Andrades-Moreno L, Redondo-Gómez S (2011) Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions. Ecotoxicol Environ Saf 74:2040–2049. doi:10.1016/j.ecoenv.2011.06.019
Mengoni A, Gonnelli C, Galardi F, Gabbrielli R, Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random amplified polymorphic DNA analysis. Mol Ecol 9:1319–1324
Meyer S (1986) The ecology of gypsophile endemism in the eastern Mojave Desert. Ecotoxicology 67:1303–1313
Millie Burrell A, Hawkins AK, Pepper AE (2012) Genetic analyses of nickel tolerance in a north American serpentine endemic plant, Caulanthus amplexicaulis var. barbarae (Brassicaceae). Am J Bot 99:1875–1883. doi:10.3732/ajb.1200382
Miriti MN (2006) Ontogenetic shift from facilitation to competition in a desert shrub. J Ecol 94:973–979. doi:10.1111/j.1365-2745.2006.01138.x
Mukalay MJ, Shutcha NM, Tshomba KJ, Mulowayi KA, Kamb CF, Ngongo Luhembwe M (2008) Causes d’une forte hétérogénéité des plants dans un champ de maïs dans les conditions pédoclimatique de Lubumbashi. Ann la Fac des Sci Agron 1:4–11
Noret N, Meerts P, Tolrà R, Poschenrieder C, Barceló J, Escarre J (2005) Palatability of Thlaspi Caerulescens for snails: influence of zinc and glucosinolates. New Phytol 165:763–771. doi:10.1111/j.1469-8137.2004.01286.x
Parish J, Bazzaz F (1985) Ontogenetic niche shifts in old-field annuals. Ecotoxicology 66:1296–1302
Peng H, Wang-Müller Q, Witt T, Malaisse F, Küpper H (2012) Differences in copper accumulation and copper stress between eight populations of Haumaniastrum katangense. Environ Exp Bot 79:58–65. doi:10.1016/j.envexpbot.2011.12.015
Pereira SIA, Barbosa L, Castro PML (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142. doi:10.1007/s13762-014-0614-z
R Development Core Team (2010) A language and environment for statistical computing. Vienna (Austria)
Rajakaruna N (2004) The edaphic factor in the origin of species. Int Geol Rev 46:471–478
Rajakaruna N, Boyd RS (2008) The edaphic factor. In: Jorgensen SE, Fath B (eds) The encyclopedia of ecology, Elsevier, vol 2. Oxford, United Kingdom, pp. 1201–1207
Roosens N, Verbruggen N, Meerts P, Ximénez-Embun P, Smith JAC (2003) Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western Europe. Plant, Cell Environ 26:1657–1672
Saad L, Parmentier I, Colinet G, Malaisse F, Faucon M-P, Meerts P, Mahy G (2012) Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (D. R. Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20:405–415. doi:10.1111/j.1526-100X.2011.00786.x
Sambatti JBM, Rice KJ (2006) Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis). Evolution (N Y) 60:696–710. doi:10.1111/j.0014-3820.2006.tb01149.x
Séleck M, Bizoux J-P, Colinet G, Faucon M-P, Guillaume A, Meerts P, Piqueray J, Mahy G (2013) Chemical soil factors influencing plant assemblages along copper-cobalt gradients: implications for conservation and restoration. Plant Soil 373:455–469. doi:10.1007/s11104-013-1819-5
Shaw J (1990) Heavy metal tolerance in plants: evolutionary aspects. CRC Press Inc, New York
Shutcha MN, Faucon M-P, Kamengwa Kissi C, Colinet G, Mahy G, Ngongo Luhembwe M, Visser M, Meerts P (2015) Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol Eng 82:81–90. doi:10.1016/j.ecoleng.2015.04.062
Springer YP (2009) Do extreme environments provide a refuge from pathogens? A phylogenetic test using serpentine flax. Am J Bot 96:2010–2021. doi:10.3732/ajb.0900047
Strauss SY, Boyd RS (2011) Herbivory and other cross-kingdom interactions on harsh soils. In: Rajakaruna N (ed) Harrison SP. University of California Press, SerpentineThe Evolution and Ecology of a Model System, pp. 180–199
Van Rossum F, Bonnin I, Fenart S, Pauwels M, Petit D, Saumitou-Laprade P (2004) Spatial genetic structure within a metallicolous population of Arabidopsis halleri, a clonal, self-incompatible and heavy-metal-tolerant species. Mol Ecol 13:2959–2967. doi:10.1111/j.1365-294X.2004.02314.x
Whiting SN, Neumann PM, Baker AJM (2003) Nickel and zinc hyperaccumulation by Alyssum murale and Thlaspi Caerulescens (Brassicaceae) do not enhance survival and whole-plant growth under drought stress. Plant, Cell Environ 26:351–360. doi:10.1046/j.1365-3040.2003.00959.x
Wright JW, Stanton ML, Scherson R (2006) Local adaptation to serpentine and non-serpentine soils in Collinsia sparsiflora. Evol Ecol Res 8:1–21
Yang XE, Jin XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47:1025–1035. doi:10.1111/j.1744-7909.2005.00144.x
Yruela I (2005) Copper in plants. Brazilian J Plant Physiol 17:145–156
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.