Antennas; Bandwidth; Biological radiation effects; Electromagnetic field effects; Temperature distribution; Electromagnetic signals; Graphical representations; Modeling methodology; Radio frequency waves; Regulatory standards; Specific absorption rate; Temperature variation; Wireless transmissions; Tissue
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
M. Zhang, T. Tarn, N. Xi, Micro/nano-devices for controlled drug delivery, in IEEE International Conference on Robotics and Automation, 2004
Q. Fang, Body EMF absorption: a design issue for implantable medical electronics. Int. J. Bioelectromagn. 12(1), 7–11 (2010)
C.H. Durney, H. Massoudi, M.F. Iskander, Radiofrequency Radiation Dosimetry Handbook. Reg. No. SAM-TR-85-73 (U.S. Air Force School of Aerospace, Medical Division, Brooks Air Force Base, 1986)
ICNIRP, ICNIRP guidelines for limiting exposure to time‐varying electric, magnetic and electromagnetic fields (up to 300 GHz). Health Phys. 74(4), 494–522 (1998)
IEEE, IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Std C95.1-2005 (Institute of Electrical and Electronics Engineers, 2005)
D. Miklavcic, N. Pavselj, F.X. Hart, Electric Properties of Tissues. Wiley Encyclopedia of Biomedical Engineering, 2006
J.P. Reilly, Applied Bioelectricity: From Electrical Stimulation to Electropathology, 1st edn. (Springer, Secaucus, 1998)
K.R. Foster, H.P. Schwan, Dielectric properties of tissues and biological materials: a critical review. Crit. Rev. Biomed. Eng. 17(1), 25–104 (1989)
Anthony N. Laskovski, Mehmet R. Yuce, T. Dissanayake, Stacked spirals for biosensor telemetry. IEEE Sensors J. 11, 1484–1490 (2011)
G. Lazzi, S.C. DeMarco, W. Liu, J.D. Weiland, M.S. Humayun, Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator–part II: results. Trans. Antennas Propagation 51(9), 2286–2295 (2003)
C. Gabriel, Compilation of the dielectric properties of body tissues at RF and microwave frequencies, February 1996
S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271–2293 (1996)
M. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 312–321 (2009)
Y. Gao et al., Low-power ultrawideband wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. Eng. 58(3), 768–772 (2011)
N. Simicevic, Dosimetric implication of exposure of human eye to ultra-wideband electromagnetic pulses, in Asia-Pacific Symposium on Electromagnetic Compatibility, 19–23 May 2008, pp. 208–211
N. Simicevic, FDTD computation of human eye exposure to ultra-wideband electromagnetic pulses. Phys. Med. Biol. 53(6), 1795–1809 (2008)
Q. Wang, J. Wang, SA/SAR analysis for multiple UWB pulse exposure, in Asia-Pacific Symposium on Electromagnetic Compatibility, 19–23 May 2008, pp. 212–215
V. De Santis, M. Feliziani, F. Maradei, Safety assessment of UWB radio systems for body area network by the FD2TD method. IEEE Trans. Magn. 46(8), 3245–3248 (2010)
C. Buccella, V. De Santis, M. Feliziani, Prediction of temperature increase in human eyes due to RF sources, in IEEE Transactions on Electromagnetic Compatibility, 2007, pp. 825–833
T. Koike-Akino, SAR analysis in dispersive tissues for in vivo UWB body area networks, in IEEE Global Telecommunications Conference, 2009, 30 November to 4 December 2009, pp. 1–6
Z.N. Chen, A. Cai, T.S.P. See, X. Qing, M.Y.W. Chia, Small planar UWB antennas in proximity of the human head. IEEE Trans. Microw. Theor. Tech. 54(4), 1846–1857 (2006)
The Visible Human Project, 2000. [Online]. http://www.nlm.nih.gov/research/visible/visible_human.html
P. Soontornpipit, Effects of radiation and SAR from wireless implanted medical devices on the human body. J. Med. Assoc. Thail. 95(2), 189–197 (2012)
L. Xu, M.Q.H. Meng, H. Ren, Y. Chan, Radiation characteristics of ingestible wireless devices in human intestine following radio frequency exposure at 430, 800, 1200, and 2400 MHz. IEEE Trans. Antennas Propag. 57(8), 2418–2428 (2009)
N.I.M. Yusoff, S. Khatun, S.A. AlShehri, Characterization of absorption loss for UWB body tissue propagation model, in IEEE 9th Malaysia International Conference on Communications, 15–17 December 2009, pp. 254–258
M. Feliziani, Advanced Numerical Techniques for EMC-Related Bio Electromagnetic and Medical Applications (Department of Electrical & Computer Engineering, Univ. of L’Aquila, L’Aquila, Italy, 2011)
CST Microwave Studio, Bio-Electromagnetic Simulations for Medical Devices (European UGM, 2011). [Online]. http://www.cst.com
N.O. Sokal, A.D. Sokal, Class E-A new class of high-efficiency tuned single-ended switching power amplifiers. IEEE J. Solid-State Circuits 10(3), 168–176 (1975)
A. Al-Kalbani, M.R. Yuce, J.-M. Redouté, Safe SAR levels in inductively powered brain implanted visual prostheses, International Symposium on Electromagnetic Compatibility (EMC Europe), 2012
G. Lazzi, Thermal effects of bioimplants. IEEE Eng. Med. Biol. Mag. 24(5), 75–81 (2005)
T. Dissanayake, M.R. Yuce, C. Ho, Design and evaluation of a compact antenna for implantto- air UWB communication. IEEE Lett. Antenn. Wireless Propag. 8, 153–156 (2009)
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.