Access control; Medium access control; Sensor nodes; Wireless local area networks (WLAN); Feasibility analysis; Guaranteed delivery; Low power sensor; Medium access control protocols; Power efficient; Ultra-wideband technology; Ultra-wideband wireless; Wireless body area network; Ultra-wideband (UWB)
M.R. Yuce, J. Khan, Wireless Body Area Networks: Technology, Implementation and Applications (Pan Stanford Publishing, 2011) ISBN 978-981-431-6712, 2011
P.S. Hall, Y. Hao, K. Ito, Guest editorial for the special issue on antennas and propagation on body-centric wireless communications. IEEE Trans. Antennas Propag. 57(4), 834-836 (2009)
http://www.ieee802.org/15/pub/TG6.html (2014)
The IEEE 804.15.6 Standard (2012) Wireless body area networks
M. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 312-321 (2009)
L. Huan-Bang, R. Kohno, Introduction of SG-BAN in IEEE 802.15 with related discussion. In: IEEE International Conference on Ultra-Wideband, pp. 134-139, Sept 2007
M.R. Yuce, Implementation of wireless body area networks for healthcare systems. Sens. Actuators, A 162, 116-129 (2010)
W. Tiexiang, W. Lei, G. Jia, H. Bangyu, A 3-D acceleration-based control algorithm for interactive gaming using a head-worn wireless device. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, pp. 1-3, 2009
K. Takizawa, L. Huan-Bang, K. Hamaguchi, R. Kohno, Wireless patient monitoring using IEEE 802.15.4a WPAN. In: IEEE International Conference on Ultra-Wideband, pp. 235-240, 2007
IEEE-802. Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). Standard, IEEE, 15 April 2006
P. Madoglio, A. Ravi, H. Xu, K. Chandrashekar, M. Verhelst, S. Pellerano, L. Cuellar, M. Aguirre, M. Sajadieh, O. Degani, H. Lakdawala, Y. Palaskas, A 20 dBm 2.4 GHz digital out phasing transmitter for WLAN application in 32 nm CMOS. In: IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp.168,170, 19-23 Feb 2012
FCC Rules and regulations, MICS band plan, Part 95, Jan 2003
FCC 05-58: Petition for waiver of the part 15 UWB regulations. Filed by the Multi-band OFDM Alliance Special Interest Group, ET Docket 04-352, 11, March 2005
ISO/IEC 26907:2007-Information technology-telecommunications and information exchange between systems-high rate ultra wideband PHY and MAC standard (2007)
http://www.wimedia.org/ (2013)
http://www.alereon.com/products/chipsets/ (2013)
M.R. Yuce, H.C. Keong, M. Chae, Wideband communication for implantable and wearable systems. IEEE Trans. Microw Theory Tech. 57(2), 2597-2604 (2009)
Y. Park, D.D. Wentzloff, An all-digital 12 pJ/pulse IR-UWB transmitter synthesized from a standard cell library. IEEE J. Solid-State Circuits 46(5), 1147,1157 (2011)
A.C.W. Wong, M. Dawkins, G. Devita, N. Kasparidis, A. Katsiamis, O. King, F. Lauria, J. Schiff, A.J. Burdett, A 1 V 5 mA multimode IEEE 802.15.6/bluetooth low-energy WBAN transceiver for biotelemetry applications. IEEE J. Solid-State Circuits 48(1), 186, 198 (2013)
K. Okada, N. Li, K. Matsushita, K. Bunsen, R. Murakami, A. Musa, T. Sato, H. Asada, N. Takayama, S. Ito, W. Chaivipas, R. Minami, T. Yamaguchi, Y. Takeuchi, H. Yamagishi, M. Noda, A. Matsuzawa, A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c. IEEE J. Solid-State Circuits 46(12), 2988, 3004 (2011)
Y. Gao, Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, C. Heng, Low-power ultrawideband wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. Eng. 58(3), 768,772 (2011)
Y. Zhao, L. Wang, J.-F. Frigon, C. Nerguizian, K. Wu, R.G. Bosisio, UWB positioning using six-port technology and a learning machine. In: IEEE Mediterranean Electrotechnical Conference, pp. 352-355, 16-19 May 2006
G. Kail, K. Witrisal, F. Hlawatsch, Direction-resolved estimation of multipath parameters for UWB channels: A partially collapsed Gibbs sampler method. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 3484-3487, 22-27 May 2011
H. Hongwei, X. Youzhi, C. C. Bilen, and Z. Hongke, Coexistence issues of 2.4ghz sensor networks with other rf devices at home. In: International Conference on Sensor Technologies and Applications, pp. 200-205, June 2009
A. Mathew, N. Chandrababu, K. Elleithy, S. Rizvi, IEEE 802.11 & bluetooth interference: simulation and coexistence. In: Seventh Annual Communication Networks and Services Research Conference, pp. 217-223, May 2009
K. Sonoda, Y. Kishida, T. Tanaka, K. Kanda, T. Fujita, K. Maenaka, and K. Higuchi, Wearable photoplethysmographic sensor system with PSoC microcontroller. In: Fifth International Conference on Emerging Trends in Engineering and Technology (ICETET), pp. 61-65, 2012
H.C. Keong, K.M. Thotahewa, M.R. Yuce, Transmit-only ultra wide band (UWB) body sensors and collision analysis. IEEE Sens. J. 13, 1949-1958 (2013)
K.M. Thotahewa, J-M. Redoute, M.R. Yuce, Implementation of a dual band body sensor node. In: IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare (IMWS-Bio2013), 2013
http://www.ti.com/ (2014)
http://www.microsemi.com/ (2014)
M.R. Yuce et al., Wireless body sensor network using medical implant band. J. Med. Syst. 31, 467-474 (2007)
http://www.opnet.com/ (2014)
M.R. Yuce, T.N. Dissanayake, H.C. Keong, Wideband technology for medical detection and monitoring, recent advances in biomedical engineering. ed. by G.R Naik, ISBN: 978-953-307-004-9, InTech, 2009
K.M.S. Thotahewa, J.-M. Redoute, M.R. Yuce, Medium access control (MAC) protocols for ultra-wideband (UWB) based wireless body area networks (WBAN), ultra-wideband and 60 GHz communications for biomedical applications (Springer, 2013) ISBN: 978-1-4614-8895-8
N.J. August, H.J. Lee, D.S. Ha, Enabling distributed medium access control for impulsebased ultrawideband radios. IEEE Trans. Veh. Technol. 56, 1064-1075 (2007)
http://www.ieee802.org/15/pub/TG6.html (2014)
H.C. Keong, M.R. Yuce, Analysis of a multi-access scheme and asynchronous transmit-only UWB for wireless body area networks. In: 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'09), pp. 6906-6909 (2009)
R.J. Fontana, E.A. Richley, Observations on low data rate, short pulse UWB systems. In: IEEE International Conference on Ultra-Wideband, pp. 334-338 (2007)
FCC 02-48 (First report and order) (2002)
IEEE-802.15.4a-2007. Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area Networks (LR-WPANs): amendment to add alternate PHY. Standard, IEEE (2014)
K. Takizawa, L. Huan-Bang, K. Hamaguchi, R. Kohno, wireless patient monitoring using IEEE 802.15.4a WPAN. In: IEEE International Conference on Ultra-Wideband, pp. 235-240 (2007)
D. Domenicali, M.G. Di Benedetto, Performance analysis for a body area network composed of IEEE 802.15.4a devices. In: 4th Workshop on Positioning, Navigation and Communication, pp. 273-276 (2007)
L. Kynsijarvi, L. Goratti, R. Tesi, J. Iinatti, M. Hamalainen, Design and performance of contention based MAC protocols in WBAN for medical ICT using IR-UWB. In :IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications Workshops, pp.107-111, 26-30 Sept 2010
J. Haapola, A. Rabbachin, L. Goratti, C. Pomalaza-Raez, I. Oppermann, Effect of impulse radio-ultrawideband based on energy collection on MAC protocol performance. IEEE Trans. Veh. Technol. 58, 4491-4506 (2009)
B. Zhen, H.-B. Li, S. Hara, R. Kohno, "Clear channel assessment in integrated medical environments. EURASIP J. Wireless Commun. Netw. 8(3), 1-8 (2008)
L.X. Cai, X. Shen, J. Mark, Efficient MAC protocol for ultra-wideband networks. IEEE Commun. Mag. 47(6), 179-185 (2009)
M.-G.D. Benedetto, L.D. Nardis, G. Giancola, D. Domenicali, The aloha access (UWB)2 protocol revisited for IEEE 802.15.4a. ST J. Res 4(1), 131-141 (2006)
M.-G.D. Benedetto, L.D. Nardis, M. Junk, G. Giancola, (UWB)2: uncoordinated, wireless, baseborn medium access for UWB communication networks. Mob. Netw. Appl. 10(5), 663-674 (2005)
R. Merz, J. Widmer, J.-Y.L. Boudec, B. Radunovi'c, A joint PHY/MAC architecture for lowradiated power TH-UWB wireless ad hoc networks. Wireless Commun. Mob Comput. J. 5(5), 567-580 (2005)
R. Jurdak, P. Baldi, C.V. Lopes, U-MAC: a proactive and adaptive UWB medium access control protocol. Wireless Commun. Mob Comput. J. 5(5), 551-566 (2005)
J.Y.L. Boudec, R. Merz, B. Radunovic, J. Widmer, DCC-MAC: a decentralized MAC protocol for 802.15.4a-like UWB mobile ad-hoc networks based on dynamic channel coding. In: 1st International Conference on Broadband Networks, pp. 396-405, Oct 2004
M. Iacobucci, M.D. Benedetto, Computer method for pseudorandom codes generation. National Italian Patent RM2001A000592, Sept 2001
B. Radunovic, J.Y.L. Boudec, Optimal power control, scheduling, and routing in UWB networks. IEEE J. Sel. Areas Commun. 22(7), 1252-1270 (2004)
I. Broustis, S.V. Krishnamurthy, M. Faloutsos, M. Molle, J.R. Foerster, Multiband media access control in impulse-based UWB Ad Hoc networks. IEEE Trans. Mob. Comput. 6(4), 351-366 (2007)
I. Bucaille, A. Tonnerre, L. Ouvry, B. Denis, MAC layer design for UWB LDR systems: PULSERS proposal. In: 4th Workshop in Positioning, Navigation and Communication, pp. 277-283, March 2007
J. Ryckaert, C. Desset, A. Fort, M. Badaroglu, V. De Heyn, P. Wambacq, G. Van der Plas, S. Donnay, B. Van Poucke, B. Gyselinckx, Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation. IEEE Trans. Circuits Syst. 52, 2515-2525 (2005)
G. Yuan, Z. Yuanjin, H. Chun-Huat, Low-power CMOS RF front-end for non-coherent IRUWB receiver. In: European Solid-State Circuits Conference, pp. 386-389 (2008)
H.C. Keong, K.M.S. Thotahewa, M.R. Yuce, Transmit-only ultra wide band body sensors and collision analysis. IEEE Sens. J. 13(5), 1949-1958 (2013)
K. Thotahewa, J. Khan, M. Yuce, Power efficient ultra wide band based wireless body area networks with narrowband feedback path. IEEE Trans. Mobile Comput. PP, 1-1 (2013) (in pre-print version)
K.M. Thotahewa, J.Y. Khan, M.R. Yuce, Power efficient ultra wide band based wireless body area networks with narrowband feedback path. IEEE Trans. Mobile Commun. (to appear)
M.R. Yuce, T.N. Dissanayake, H.C. Keong, in Wideband Technology for Medical Detection and Monitoring, Recent Advances in Biomedical Engineering, ed. by G.R Naik (InTech, Florida, 2009). ISBN: 978-953-307-004-9
H.C. Keong, M.R. Yuce, Analysis of a multi-access scheme and asynchronous transmit-only UWB for Wireless Body Area Networks. The 31st annual international conference of the IEEE engineering in medicine and biology society (EMBC'09), pp. 6906-6909, 2009
H.C. Keong, K.M. Thotahewa, M.R. Yuce, Transmit-only ultra wide band (UWB) body sensors and collision analysis. IEEE Sens. J. 13, 1949-1958 (2013)
K.M. Silva, M.R Yuce, J.Y. Khan, Network topologies for dual band (UWB-transmit and Narrow Band-receive) Wireless Body Area Network, in Proceedings of the ACM/IEEE Body Area Networks (Body Nets), 7-8 Nov 2011
http://www.rfm.com/products/data/rx5500.pdf, 2013
http://www.mathworks.com, 2013
http://www.opnet.com, 2013
M.R. Yuce, Ho Chee Keong, M. Chae, Wideband communication for implantable and wearable systems. IEEE Trans. Microw. Theory Tech. 57(2), 2597-2604 (2009)
A. Ridolfi, M.Z. Win, Ultrawide bandwidth signals as shot noise: a unifying approach. IEEE J. Sel. Areas Commun. 24(4), 899-905 (2006)
A. Khaleghi, R. Chavez-Santiago, X. Liang, I. Balasingham, V.C.M. Leung, T.A. Ramstad, On ultra wideband channel modeling for in-body communications, in 5th IEEE International Symposium on Wireless Pervasive Computing, pp. 140-145, 2010
IEEE P802.15-02/240-SG3a, Empirically Based Statistical Ultra-Wideband Channel Model
IEEE P802.15-02/490r1-SG3a, Channel Modeling Sub-committee Report Final, February 2003
R.J. Punnoose, P.V. Nikitin, D.D. Stancil, Efficient simulation of ricean fading within a packet simulator. IEEE Veh. Technol. Conf. 2, 764-767 (2000)
FCC 02-48 (First Report and Order), 2002
R.J. Fontana, E.A. Richley, Observations on low data rate, short pulse UWB systems. IEEE international conference on ultra-wideband, pp. 334-338, 2007
FCC 05-58: Petition for waiver of the part 15 UWB regulations. Filed by the multi-band OFDM Alliance Special Interest Group, ET Docket 04-352, March 11, 2005
H. Chee Keong, M.R. Yuce, Transmit only UWB body area network for medical applications. Asia Pacific microwave conference, pp. 2200-2203, 2009
K. Witrisal, G. Leus, G.J.M. Janssen, M. Pausini, F. Troesch, T. Zasowski, J. Romme, Noncoherent ultra-wideband systems. IEEE Signal Process. Mag. 26(4), 48, 66 (2009)
I. Guvenc, H. Arslan, S. Gezici, H. Kobayashi, Adaptation of two types of processing gains for UWB impulse radio wireless sensor networks. IET Commun. 1(6), 1280, 1288 (2007)
IEEE-802.15.4-2006, Part 15.4: wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs). Standard, IEEE
IEEE-802.15.4a-2007, Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs): amendment to add alternate PHY. Standard, IEEE
J. Sun, Z. Wang, H. Wang, X. Zhang, Research on routing protocols based on Zig Bee network. Third international conference on intelligent information hiding and multimedia signal processing, vol. 1, pp. 639-642, 2007
J.Y. Le Boudec, R. Merz, B. Radunovic, J. Widmer, DCCMAC: A decentralized MAC protocol for 802.15.4a-Like UWB mobile Ad-Hoc networks based on dynamic channel coding. Broadnets, 2004
L. Kynsijarvi, L. Goratti, R. Tesi, J. Iinatti, M. Hamalainen, Design and performance of contention based MAC protocols in WBAN for medical ICT using IR-UWB, in IEEE 21st International Symposium on Personal, Indoor and Mobile Radio Communications Workshops, pp. 107-111, 26-30 Sept 2010
S. Ullah, M. Chen, K. Kwak, Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol. J. Med. Syst. 36(6), 3875-3891 (2012)
S. Cheng, C. Huang, C. Tu, RACOON: a multiuser QoS design for mobile wireless body area networks. J. Med. Syst. 35(5), 1277-1287 (2011)
L. De Nardis, G. Giancola, M.-G. Di Benedetto, Performance analysis of uncoordinated medium access control in low data rate UWB networks. 2nd International Conference on Broadband Networks, vol. 2, pp. 1129-1135, 7-7 Oct 2005
H. Jeongwoo, N. Cam, A new ultra-wideband, ultra-short monocycle pulse generator with reduced ringing. IEEE Microw. Wirel. Compon. Lett. 12, 206-208 (2002)
L. Jeong-Soo, N. Cam, Novel low-cost ultra-wideband, ultra-short-pulse transmitter with MESFET impulse-shaping circuitry for reduced distortion and improved pulse repetition rate. IEEE Microw. Wirel. Compon. Lett. 11, 208-210 (2001)
S. Bourdel, Y. Bachelet, J. Gaubert, R. Vauche, O. Fourquin, N. Dehaese, H. Barthelemy, A 9-pJ/Pulse 1.42-Vpp OOK CMOS UWB pulse generator for the 3.1-10.6 GHz FCC band. IEEE Trans. Microw. Theory Tech. 58, 65-73 (2010)
L. Smaini, C. Tinella, D. Helal, C. Stoecklin, L. Chabert, C. Devaucelle, R. Cattenoz, N. Rinaldi, D. Belot, Single-chip CMOS pulse generator for UWB systems. IEEE J. Solid-State Circuits 41, 1551-1561 (2006)
S. Sanghoon, K. Dong-Wook, H. Songcheol, A CMOS UWB pulse generator for 3-10 GHz applications. IEEE Microw. Wirel. Compon. Lett. 19, 83-85 (2009)
M. R. Yuce, W. Liu, M. S. Chae, J. S. Kim, A wideband telemetry unit for multi-channel neural recording systems. IEEE international conference on ultra-wideband (ICUWB), pp. 612-617, Sept 2007
Z. Yunliang, J. D. Zuegel, J. R. Marciante, W. Hui, A 0.18 lm CMOS distributed transversal filter for sub-nanosecond pulse synthesis, in IEEE Radio and Wireless Symposium, pp. 563-566, 2006
M. Chae, W. Liu, Z. Yang, T. Chen, J. Kim, M. Sivaprakasam, M. Yuce, A 128-channel 6mW wireless neural recording IC with on-the-fly spike sorting and UWB transmitter. IEEE international solid-state circuits conference (ISSCC'08), pp. 146-603, 3-7 Feb 2008
Y. Gao, Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, C. Heng, Low-power ultra-wideband wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. Eng. 58(3), 768, 772 (2011)
Ho Chee Keong, M. R. Yuce, Low data rate ultra wideband ECG monitoring system. IEEE engineering in medicine and biology society conference, pp. 3413-3416, August 2008
D.D. Wentzloff, A.P. Chandrakasan, Gaussian pulse generators for subbanded ultra-wideband transmitters. IEEE Trans. Microw. Theory Tech. 54, 1647-1655 (2006)
J. Ryckaert, C. Desset, A. Fort, M. Badaroglu, V. De Heyn, P. Wambacq, G. Van der Plas, S. Donnay, B. Van Poucke, B. Gyselinckx, Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation. IEEE Trans. Circuits Syst. I Regul. Pap. 52, 2515-2525 (2005)
K. Hyunseok, J. Young Joong, and J. Sungying, Digitally controllable bi-phase CMOS UWB pulse generator. IEEE international conference on ultra-wideband, pp. 442-445, 2005
T. Norimatsu, R. Fujiwara, M. Kokubo, M. Miyazaki, A. Maeki, Y. Ogata, S. Kobayashi, N. Koshizuka, K. Sakamura, A UWB-IR transmitter with digitally controlled pulse generator. IEEE J. Solid-State Circuits 42, 1300-1309 (2007)
Z. Ming Jian, L. Bin, W. Zhao Hui, 20-pJ/Pulse 250 Mbps Low-complexity CMOS UWB transmitter for 3-5 GHz applications. IEEE Microw. Wirel. Compon. Lett. 23, 158-160 (2013)
D. Baranauskas, D. Zelenin, A 0.36 W up to 20GS/s DAC for UWB wave formation. IEEE international solid-state circuits conference, pp. 2380-2389, 2006
L. Lampe, K. Witrisal, Challenges and recent advances in IR-UWB system design, in IEEE International Symposium on Circuits and Systems, pp. 3288-3291, June 2010
D. Barras, R. Meyer-Piening, G. von Bueren, W. Hirt, H. Jaeckel, A low-power baseband ASIC for an energy-collection IR-UWB receiver. IEEE J Solid-State Circuits 44(6), 1721,1733 (2009)
A. Gerosa, S. Soldà, A. Bevilacqua, D. Vogrig, A. Neviani, An energy-detector for noncoherent impulse-radio UWB receivers. IEEE Trans. Circuits Syst. I Regul. Pap. 56(5), 1030-1040 (2009)
L. Jinjin, L. Jianan, S. Zhiyuan, A new transmitted reference based UWB receiver. Int. Conf. Commun. Mobile Comput. 3, 97-101 (2010)
G. F. Tchere, P. Ubolkosold, S. Knedlik, O. Loffeld, Bit error performance of UWB differential transmitted reference systems, in International Symposium on Communications and Information Technologies, pp. 609-614, Sep 2006
K. Witrisal, G. Leus, G. Janssen, M. Pausini, F. Troesch, T. Zasowski, J. Romme, Noncoherent ultra-wideband systems. IEEE Signal Process. Mag. 26, 48-66 (2009)
L. Zhou, Z. Chen, C. Wang, F. Tzeng, V. Jain, P. Heydari, A 2-Gb/s 130-nm CMOS RF-correlation-based IR-UWB transceiver front-end. IEEE Trans. Microw. Theory Tech. 59(4), 1117-1130 (2011)
C. Geng, Y. Pei, W. Wen, Z. Luan, N. Ge, ASIC implementation of fractionally spaced Rake receiver for high data rate UWB systems. Electron. Lett. 47(3), 215-217 (2011)
W.M. Lovelace, J.K. Townsend, The effects of timing jitter and tracking on the performance of impulse radio. IEEE J. Sel. Areas Commun. 20, 1646-1651 (2002)
O. Mi-Kyung, J. Byunghoo, R. Harjani, P. Dong-Jo, A new noncoherent UWB impulse radio receiver. IEEE Commun. Lett. 9, 151-153 (2005)
A. Idriss, R. Moorfeld, S. Zeisberg, A. Finger, Performance of coherent and non-coherent receivers of UWB communication. Second IFIP international conference on wireless and optical communications networks, pp. 117-122, 6-8 March 2005
T. Wei, E. Culurciello, A low-power high-speed ultra-wideband pulse radio transmission system. IEEE Trans. Biomed. Circuits Syst. 3, 286-292 (2009)
J. Colli-Vignarelli, C. Dehollain, A discrete-components impulse-radio ultrawide-band (IRUWB) transmitter. IEEE Trans. Microw. Theory Tech. 59, 1141-1146 (2011)
M. R. Yuce, K. M. Thotahewa, K. Ho Chee, Development of low-power UWB body sensors, in International Symposium on Communications and Information Technologies, pp. 143-148, 2012
K. Ho Chee, M. R. Yuce, UWB-WBAN sensor node design. Annual international conference of the IEEE engineering in medicine and biology society, pp. 2176-2179, 2011
M.R. Yuce, J. Khan, Wireless body area networks: technology, implementation and applications. (Pan Stanford Publishing, Singapore, 2011), ISBN 978-981-431-6712
M.R. Yuce, K.M. Thotahewa, J.-M. Redoute, H.C. Keong, Development of low-power UWB body sensors, in IEEE International Symposium on Communications and Information Technologies (ISCIT), pp. 143-148, Oct 2012
M.R. Yuce, H.C. Keong, M. Chae, Wideband communication for implantable and wearable systems. IEEE Trans. Microw. Theory Tech. 57, Part 2, 2597-2604 (2009)
K.M.S. Thotahewa, J.-M. Redoute, M.R. Yuce, Implementation of ultra-wideband (UWB) sensor nodes for WBAN applications, Ultra-Wideband and 60 GHz communications for biomedical applications. (Springer, New York, 2014)
K.M. Thotahewa, J.-M. Redoute, M.R. Yuce, Implementation of a dual band body sensor node, in IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare (IMWS-Bio2013), 2013
K.M. Thotahewa, J.-M. Redoute, M.R. Yuce, A low-power, wearable, dual-band wireless body area network system: development and experimental evaluation, submitted
N.R. Mahapatra, A. Tareen, S.V. Garimella, Comparison and analysis of delay elements. IEEE Midwest Circuits Syst. Symp. 2, 473-476 (2002)
M. Cavallaro, T. Copani, G. Palmisano, A Gaussian pulse generator for millimeter-wave applications. IEEE Trans. Circuits Syst. I Regul. Pap. 57, 1212-1220 (2010)
Y.P. Nakache, A.F. Molisch, Spectral shape of UWB signals-influence of modulation format, multiple access scheme and pulse shape, IEEE Veh. Technol. Conf. 4, 2510-2514 (2003)
http://www.linear.com/ 2014
http://www.analog.com 2014
http://www.fairchildsemi.com/ 2014
E. Bogatin, Signal Integrity-Simplified, 1st edn. (Prentice Hall, New Jersey, 2004)
J. Colli-Vignarelli, C. Dehollain, A discrete-components impulse-radio ultrawide-band (IRUWB) transmitter. IEEE Trans. Microw. Theory Tech. 59, 1141-1146 (2011)
http://www.minicircuits.com 2014
http://www.hittite.com 2014
http://www.rfm.com 2014
http://www.microchip.com 2014
http://www.ti.com 2014
J. Davis, High-Speed Digital System Design, 1st edn. (Morgan and Claypool, California, 2006)
C. Chastang, C. Gautier, M. Brizoux, A. Grivon, V. Tissier, A. Amedeo, F. Costa, Electrical behavior of stacked microvias integration technologies for multi-gigabits applications using 3D simulation, in 15th IEEE Workshop on Signal Propagation on Interconnects, pp. 65-68, 2011
B.C. Wadell (1991) Transmission line design handbook. (Artech House, London, 1991), pp. 79-80
M.R. Yuce, Implementation of wireless body area networks for healthcare systems. Sens. Actuators A Phys. 162, 116-129 (2010)
B. Razavi, RF Microelectronics (Prentice-Hall, Upper Saddle River, 2006)
http://www.avagotech.com 2014
IEEE P802.15-02/490r1-SG3a, Channel Modeling Sub-committee Report Final, Feb 2003
http://www.altera.com/ 2014
H.C. Keong, M.R. Yuce, Low data rate ultra wideband ECG monitoring system, in the IEEE Engineering in Medicine and Biology Society Conference (IEEE EMBC08), pp. 3413-3416, Aug 2008
H.C. Keong, K.M. Thotahewa, M.R. Yuce, Transmit-only ultra wide band (UWB) body sensors and collision analysis. IEEE Sens. J. 13, 1949-1958 (2013)
K.M. Thotahewa, J.-M. Redoute, M.R. Yuce, Implementation of a dual band body sensor node, in IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare (IMWS-Bio2013), 2013
H.C. Keong, T.S.P. See, M.R. Yuce, An ultra-wideband wireless body area network: evaluation in static and dynamic channel conditions. Sens. Actuators A Phys. 180, 137-147 (2012)
A. Taparugssanagorn, C. Pomalaza-Raez, R. Tesi, M. Hamalainen, J. Iinatti, Effect of body motion and the type of antenna on the measured UWB channel characteristics in medical applications of wireless body area networks, in IEEE International Conference on Ultra-Wideband, pp. 332-336, 2009
K. Thotahewa, J. Khan, M. Yuce, Power efficient ultra wide band based wireless body area networks with narrowband feedback path. IEEE Trans. Mobile Comput. pp. 1-1 (2013) (in pre-print version)
K.M. Silva, M.R Yuce, J.Y. Khan, Multiple access protocol for UWB wireless body area networks (WBANs) with narrowband feedback path, in Proceedings of the IEEE International Symposium on Applied Sciences in Biomedical and Communication Technologies (ISABEL), 2011
K.M. Thotahewa, J.-M. Redoute, M.R. Yuce, A low-power, wearable, dual-band wireless body area network system: development and experimental evaluation (submitted)
http://www.altera.com/, 2014
www.mathworks.com, 2014
P. Jian, Z. Sheng, J. Benzhou, L. Xiaokang, Performance analysis of three kinds of noncoherent detectors for ultra-wideband communications, in 7th International Conference on Wireless Communications, Networking and Mobile Computing, pp. 1-4, 2011
Y. Gao, Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, C. Heng, Low-power ultra-wideband wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. Eng. 58(3), 768-772 (2011)
D. Barras, R. Meyer-Piening, G. von Bueren, W. Hirt, H. Jaeckel, A low-power baseband ASIC for an energy-collection IR-UWB receiver. IEEE J. Solid-State Circuits 44, 1721-1733 (2009)
S. Wang, R. O'Keeffe, N. Wang, M. Hayes, B. O'Flynn, S.C. Ó Mathúna, Practical wireless sensor networks power consumption metrics for building energy management applications, in 23rd European Conference on Construction Informatics, Cork, Ireland, 12-14 Sept 2011
N. Gopalsami, I. Osorio, S. Kulikov, S. Buyko, A. Martynov, A.C. Raptis, SAW Microsensor Brain Implant for Prediction and Monitoring of Seizures. IEEE Sens. J. 7(7), 977-982 (2007)
A.V. Nurmikko, J.P. Donoghue, L.R. Hochberg, W.R. Patterson, Y.-K. Song, C.W. Bull, D.A. Borton, F. Laiwalla, S. Park, Y. Ming, J. Aceros, Listening to brain microcircuits for interfacing with external world. Proc. IEEE Prog. Wirel. Implantable Microelectron. Neuroeng. Devices 98(3), 375-388 (2010)
C. Cavallotti, M. Piccigallo, E. Susilo, P. Valdastri, A. Menciassi, P. Dario, An integrated vision system with autofocus for wireless capsular endoscopy. Sens. Actuators, A 156(1), 72-78 (2009)
X. Chen, X. Zhang, L. Zhang, X. Li, N. Qi, H. Jiang, Z. Wang, A wireless capsule endoscope system with low-Power controlling and processing ASIC. IEEE Trans. Biomed. Circ. Syst. 3(1), 11-22 (2009)
ICNIRP, Guidelines for Limiting to time varying electric, magnetic, and electromagnetic fields (up to 300 GHz), in International Commission on Non-ionizing Radiation Protection, 1997
Institute of Electrical and Electronics Engineers (IEEE), in IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. IEEE Std C95.1-2005 (2005)
P. Soontornpipit, Effects of radiation and SAR from wireless implanted medical devices on the human body. J. Med. Assoc. Thai. 95(2), 189-197 (2012)
L. Xu, M.Q.H. Meng, H. Ren, Y. Chan, Radiation characteristics of ingestible wireless devices in human intestine following radio frequency exposure at 430, 800, 1200, and 2400 MHz. IEEE Trans. Antennas Propag. 57(8), 2418-2428 (2009)
Q. Wang, J. Wang, SA/SAR analysis for multiple UWB pulse exposure, in Asia-Pacific Symposium on Electromagnetic Compatibility and 19th International Zurich Symposium on Electromagnetic Compatibility, pp. 212-215, 19-23 May 2008
M. Klemm, G. Troester, EM energy absorption in the human body tissues due to UWB antennas. Prog. Electromagnet. Res. 62, 261-280 (2006)
V. De Santis, M. Feliziani, F. Maradei, Safety assessment of UWB radio systems for body area network by the FD2TD method. IEEE Trans. Magn. 46(8), 3245-3248 (2010)
Z.N. Chen, A. Cai, T.S.P. See, X. Qing, M.Y.W. Chia, Small planar UWB antennas in proximity of the human head. IEEE Trans. Microw. Theor. Tech. 54(4), 1846-1857 (2006)
C. Buccella, V. De Santis, M. Feliziani, Prediction of temperature increase in human eyes due to RF sources. IEEE Trans. Electromagn. Compat. 49(4), 825-833 (2007)
N.I.M. Yusoff, S. Khatun, S.A. AlShehri, Characterization of absorption loss for UWB body tissue propagation model, in IEEE 9th Malaysia International Conference on Communications, pp. 254-258, 15-17 Dec 2009
A. Santorelli, M. Popovic, SAR distribution in microwave breast screening: results with TWTLTLA wideband antenna, in Seventh International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 11-16, 6-9 Dec 2011
F. Shahrokhi, K. Abdelhalim, D. Serletis, P.L. Carlen, R. Genov, The 128-channel fully differential digital integrated neural recording and stimulation interface. IEEE Trans. Biomed. Circuits Syst. 4(3), 149-161 (2010)
M. Chae, Z. Yang, M.R. Yuce, L. Hoang, W. Liu, A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 312-321 (2009)
Y. Gao, Y. Zheng, S. Diao, W. Toh, C. Ang, M. Je, and C. Heng, Low-power ultra-wideband wireless telemetry transceiver for medical sensor applications. IEEE Trans. Biomed. Eng. 58(3), 768, 772 (2011)
K.M.S. Thotahewa, A.I. AL-Kalbani, J.-M. Redoute, M.R. Yuce, Electromagnetic Effects of Wireless Transmission for Neural Implants, Neural Computation, Neural Devices, and Neural Prosthesis (Springer, New York, 2014)
O. Novak, C. Charles, R.B. Brown, A fully integrated 19 pJ/pulse UWB transmitter for biomedical applications implemented in 65 nm CMOS technology, in 2011 IEEE International Conference on Ultra-Wideband (ICUWB), pp. 72-75, 14-16 Sept 2011
W.-N. Liu, T.-H. Lin, An energy-efficient ultra-wideband transmitter with an FIR pulseshaping filter, in International Symposium on VLSI Design, Automation, and Test, pp. 1-4, 23-25 Apr 2012
T. Koike-Akino, SAR analysis in tissues for in vivo UWB body area networks, in IEEE Global Telecommunications Conference, pp. 1-6, 30 Nov-4 Dec 2009
P.J. Dimbylow, Fine resolution calculations of SAR in the human body for frequencies up to 3 GHz. Phys. Med. Biol. 47(16), 2835-2846 (2002)
M.R. Basar, M.F.B.A. Malek, K.M. Juni, M.I.M. Saleh, M.S. Idris, L. Mohamed, N. Saudin, N.A. Mohd Affendi, A. Ali, The use of a human body model to determine the variation of path losses in the human body channel in wireless capsule endoscopy. Prog. Electromagnet. Res. 133, 495-513 (2014)
D. Kurup, M. Scarpello, G. Vermeeren, W. Joseph, K. Dhaenens, F. Axisa, L. Martens, D. Vande Ginste, H. Rogier, J. Vanfleteren, In-body path loss models for implants in heterogeneous human tissues using implantable slot dipole conformal flexible antennas. EURASIP J. Wireless Commun. Netw. ISSN: 1687-1499 (2011)
A. Khaleghi, I. Balasingham, Improving in-body ultra wideband communication using nearfield coupling of the implanted antenna. Microw. Opt. Technol. Lett. 51(3), 585-589 (2009)
A. Khaleghi, R. Chávez-Santiago, I. Balasingham, Ultra-wideband statistical propagation channel model for implant sensors in the human chest. IET Microwaves Antennas Propag. 5(15), 1805-1812 (2011)
CST Studio Suite TM, CST AG, Germany, http://www.cst.com, 2014
FCC 02-48 (UWB First Report and Order), 2002
S. Gabriel, R.W. Lau, C. Gabriel, The dielectric properties of biological tissues: III. parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41(11), 2271-2293 (1996)
M. O'Halloran, M. Glavin, E. Jones, Frequency-dependent modelling of ultra-wideband pulses in human tissue for biomedical applications, in IET Irish Signals and Systems Conference, pp. 297-301 (2006)
S.C. DeMarco, G. Lazzi, W. Liu, J.D. Weiland, M.S. Humayun, Computed SAR and thermal elevation in a 0.25-mm 2-D model of the human eye and head in response to an implanted retinal stimulator-part I: models and methods. IEEE Trans. Antennas Propag. 51(9), 2274-2285 (2003)
C. Gabriel, S. Gabriel, R.W. Lau, The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41(11), 2231-2249 (1996)
A. Peyman, C. Gabriel, E.H. Grant, G. Vermeeren, L. Martens, Variation of the dielectric properties of tissues with age: the effect on the values of SAR in children when exposed to walkie-talkie devices. Phys. Med. Biol. 54(2), 227-241 (2009)
C. Gabriel, Dielectric properties of biological tissue: variation with age. Bioelectromagnetics, 26(7), 12-18 (2005)
J. Wang, O. Fujiwara, S. Watanabe, Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones. IEEE Trans. Electromagn. Compat. 48(2), 408-413 (2006)
K. Lichtenecker, Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper. Phys. Z. 27, 115-158 (1926)
P.L. Altman, D.S. Dittmer, Biology Data Book: Blood and Other Body Fluids (Federation of American Societies for Experimental Biology, Washington, DC, 1974)
K.M.S. Thotahewa, J.M. Redoute, M.R. Yuce, SAR, SA, and temperature variation in the human head caused by IR-UWB implants operating at 4 GHz. IEEE Trans. Microw. Theory Tech. 61, 2161-2169 (2013)
T. Weiland, M. Timm, I. Munteanu, A practical guide to 3-D simulation. IEEE Microwave Mag. 9(6), 62-75 (2008)
M. Clement, T. Weiland, Discrete electromagnetism with finite integral technique. Prog. Electromagn. Res. 32, 65-87 (2001)
IEEE C95.3-2002, Recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz-300 GHz, in IEEE Standard C95.3, 2002
ACGIH, Threshold limit values for chemical substances and physical agents and biological exposure indices, in American Conference of Governmental Industrial Hygienists, 1996
H.H. Pennes, Analysis of tissue and arterial blood temperatures in resting forearm. J. Appl. Physiol. 1, 93-122 (1948)
M. Hoque, O.P. Gandhi, Temperature distributions in the human leg for VLF-VHF exposures at the ANSI recommended safety levels. IEEE Trans. Biomed. Eng. 35, 442-449 (1988)
P. Bernardi, M. Cavagnaro, S. Pisa, E. Piuzzi, Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900-MHz range. IEEE Trans. Biomed. Eng. 50(3), 295-304 (2003)
S.H. Lee, J. Lee, Y.J. Yoon, S. Park, C. Cheon, K. Kim, S. Nam, A wideband spiral antenna for ingestible capsule endoscope systems: experimental results in a human phantom and a pig. IEEE Trans. Biomed. Eng. 58(6), 1734-1741 (2011)
A. Moglia, A. Menciassi, M.O. Schurr, P. Dario, Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed. Microdevices 9(2), 235-243 (2007)
T. Dissanayake, K.P. Esselle, M.R. Yuce, Dielectric loaded impedance matching for wideband implanted antennas. IEEE Trans. Microw. Theory Tech. 57(10), 2480-2487 (2009)
K.M.S. Thotahewa, J.M. Redoute, M.R. Yuce, Electromagnetic power absorption of the human abdomen from IR-UWB based wireless capsule endoscopy devices, in IEEE International Conference on Ultra-Wideband (ICUWB), pp. 79-84, 2013
K.M.S. Thotahewa, J.-M. Redoute, M.R. Yuce, Electromagnetic and thermal effects of IRUWB wireless implant systems on the human head, in 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5179-5182, Osaka, Japan, Jul 2013
G. Pan, L. Wang, Swallowable wireless capsule endoscopy: Progress and technical challenges. Gastroenterol. Res. Pract. 2012 (841691), 9 (2012)
C. Kim, S. Nooshabadi, Design of a tunable all-digital UWB pulse generator CMOS chip for wireless endoscope. IEEE Trans. on Bio-Med. Circuits Syst. 4(2), 118-124 (2010)