STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Guo, R. L.; Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, Laboratoire de Physique Atmosphérique et Planétaire, STAR Institute, Université de Liège, Liège, Belgium
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Wei, Y.; Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
Ray, L. C.; Department of Physics, Lancaster University, Lancaster, United Kingdom
Rae, I. J.; Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
Arridge, C. S.; Department of Physics, Lancaster University, Lancaster, United Kingdom
Coates, A. J.; Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
Delamere, P. A.; University of Alaska Fairbanks, Geophysical Institute, Fairbanks, AK, United States
Sergis, N.; Office for Space Research and Technology, Academy of Athens, Athens, Greece, Institute of Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, Athens, Greece
Kollmann, P.; Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, United States
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Dunn, W. R.; Mullard Space Science Laboratory, University College London, Dorking, United Kingdom
Waite, J. H.; Southwest Research Institute, San Antonio, TX, United States
Burch, J. L.; Southwest Research Institute, San Antonio, TX, United States
Pu, Z. Y.; School of Earth and Space Sciences, Peking University, Beijing, China
Palmaerts, Benjamin ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Dougherty, M. K.; Department of Physics, Faculty of Natural Sciences, Imperial College, London, United Kingdom
Clausen-Brown, E. & Lyutikov, M. Crab nebula gamma-ray flares as relativistic reconnection minijets. Mon. Not. R. Astron. Soc. 426, 1374–1384 (2012).
Parker, E. N. The solar-flare phenomenon and the theory of reconnection and annihilation of magnetic fields. Astrophys. J. Suppl. Ser. 8, 177 (1963).
Dungey, J. W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961).
Paschmann, G. et al. Plasma acceleration at the Earth’s magnetopause: evidence for reconnection. Nature 282, 243–246 (1979).
Delamere, P., Otto, A., Ma, X., Bagenal, F. & Wilson, R. Magnetic flux circulation in the rotationally driven giant magnetospheres. J. Geophys. Res. Space Phys. 120, 4229–4245 (2015).
Roussos, E. et al. Quasi-periodic injections of relativistic electrons in Saturn’s outer magnetosphere. Icarus 263, 101–116 (2016).
Mitchell, D. et al. Recurrent pulsations in Saturn’s high latitude magnetosphere. Icarus 263, 94–100 (2016).
Vasyliunas, V. Plasma distribution and flow. Phys. Jovian Magnetos. 1, 395–453 (1983).
Burkholder, B. et al. Local time asymmetry of Saturn’s magnetosheath flows.Geophys. Res. Lett. 44, 5877–5883, (2017).
Yao, Z. et al. Corotating magnetic reconnection site in Saturn’s magnetosphere.Astrophys. J. Lett. 846, L25 (2017).
Angelopoulos, V. et al. Tail reconnection triggering substorm onset. Science 321, 931–935 (2008).
Arridge, C. S. et al. Cassini in situ observations of long-duration magnetic reconnection in Saturn’s magnetotail.Nat. Phys. 12, 268–271, (2016).
Kronberg, E., Kasahara, S., Krupp, N. & Woch, J. Field-aligned beams and reconnection in the jovian magnetotail. Icarus 217, 55–65 (2012).
Dougherty, M. K. et al. The Cassini magnetic field investigation. Space Sci. Rev. 114, 331–383 (2004).
Young, D. et al. Cassini plasma spectrometer investigation. Space Sci. Rev. 114, 1–112 (2004).
Nagai, T. et al. Geotail observations of the Hall current system: evidence of magnetic reconnection in the magnetotail. J. Geophys. Res. Space Phys. 106, 25929–25949 (2001).
Krimigis, S. M. et al. Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space. Sci. Rev. 114, 233–329 (2004).
Lindstedt, T. et al. Separatrix regions of magnetic reconnection at the magnetopause.Ann. Geophys. 27, 4039–4056 (2009).
Mauk, B. et al. Transient aurora on Jupiter from injections of magnetospheric electrons. Nature 415, 1003 (2002).
Wang, S. et al. Electron heating in the exhaust of magnetic reconnection with negligible guide field. J. Geophys. Res. Space Phys. 121, 2104–2130 (2016).
Birn, J. et al. Geospace environmental modeling (GEM) magnetic reconnection challenge. J. Geophys. Res. Space Phys. 106, 3715–3719 (2001).
Palmaerts, B. et al. Statistical analysis and multi-instrument overview of the quasi-periodic 1-hour pulsations in Saturn’s outer magnetosphere. Icarus 271, 1–18 (2016).
Radioti, A. et al. Auroral signatures of multiple magnetopause reconnection at Saturn. Geophys. Res. Lett. 40, 4498–4502 (2013).
Gérard, J. C. et al. Altitude of Saturn’s aurora and its implications for the characteristic energy of precipitated electrons. Geophys. Res. Lett. 36, L02202 (2009).
Grodent, D., Gérard, J. C., Clarke, J., Gladstone, G. & Waite, J.A possible auroral signature of a magnetotail reconnection process on Jupiter.J. Geophys. Res. Space Phys. 109, A05201 (2004).
Badman, S. V. et al. Bursty magnetic reconnection at Saturn’s magnetopause. Geophys. Res. Lett. 40, 1027–1031 (2013).
Gladstone, G. et al. A pulsating auroral X-ray hot spot on Jupiter. Nature 415, 1000–1003 (2002).
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., Retino, A. & Andre, M. Energetic electron acceleration by unsteady magnetic reconnection. Nat. Phys. 9, 426–430 (2013).
Kanani, S. J. et al. A new form of Saturn’s magnetopause using a dynamic pressure balance model, based on in situ, multi-instrument Cassini measurements. J. Geophys. Res. Space Phys. 115, A06207 (2010).
Tao, C., Kataoka, R., Fukunishi, H., Takahashi, Y. & Yokoyama, T.Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements.J. Geophys. Res. 110, A11208 (2005).
Arridge, C. et al. Saturn’s magnetodisc current sheet. J. Geophys. Res. Space Phys. 113, A04214(2008).
Arridge, C. S. et al. Periodic motion of Saturn’s nightside plasma sheet.J. Geophys. Res. Space Phys. 116, A11205 (2011).
Sergeev, V. et al. Current sheet flapping motion and structure observed by Cluster. Geophys. Res. Lett. 30, 1327–1324 (2003).
Runov, A. et al. Electric current and magnetic field geometry in flapping magnetotail current sheets.Ann. Geophys. 23, 1391–1403 (2005).
Delamere, P. A., Wilson, R. J. & Masters, A.Kelvin–Helmholtz instability at Saturn’s magnetopause: hybrid simulations.J. Geophys. Res. Space Phys. 116, A10222 (2011).
Masters, A. et al. Cassini observations of a Kelvin–Helmholtz vortex in Saturn’s outer magnetosphere.J. Geophys. Res. Space Phys. 115, A07225 (2010).
Sweet, P. A. The production of high energy particles in solar flares. Nuovo Cimento 8, 188–196 (1958).
Parker, E. N. Sweet’s mechanism for merging magnetic fields in conducting fluids. J. Geophys. Res. 62, 509–520 (1957).
Thomsen, M. F. et al. Survey of ion plasma parameters in Saturn’s magnetosphere.J. Geophys. Res. Space Phys. 115, A10220 (2010).
Korovinskiy, D. B., Semenov, V. S., Erkaev, N. V., Divin, A. V. & Biernat, H. K. The 2.5-D analytical model of steady-state Hall magnetic reconnection. J. Geophys. Res. Space Phys. 113, A04205 (2008).
Nichols, J. D. et al. Saturn’s equinoctial auroras.Geophys. Res. Lett. 36, L24102 (2009).
Yao, Z. H. et al. Mechanisms of Saturn’s near-noon transient aurora: in situ evidence from Cassini measurements.Geophys. Res. Lett. 44, 217–228 (2017).