Abstract :
[en] The nonlinear analysis of reinforced concrete frame structures with slender members can be performed accurately and efficiently with 1D elements based on the plane-sections-remain-plane hypothesis. However, if the frame also includes deep beams which require 2D high-fidelity finite element procedures, the analysis of large structures can become very costly. To address this challenge, this paper proposes a mixed-type modeling framework which integrates 1D slender beam elements with a novel 1D macroelement for deep beams. The framework is implemented in an existing nonlinear analysis procedure and is used to model 18 deep beam tests and a 20-story frame. It is shown that the proposed framework provides similarly accurate predictions to the 2D high fidelity procedures but requires a fraction of the time for modeling and analysis. Furthermore, the macroelement improves the post-peak predictions, and therefore the framework is suitable for evaluating the resilience of structures under extreme loading.
Scopus citations®
without self-citations
5