[en] A silylated porphyrin derivative is co-hydrolyzed with Ti(OiPr)4 to produce a hybrid TiO2 photocatalyst, and three different ratios between porphyrin and TiO2 are made. In this way, the porphyrin fragments are held in the resulting matrix through strong Si-O-Ti covalent bonds to limit porphyrin leaching. Thanks to its photoactive character the porphyrin fragment can act as an actuator for the TiO2 to degrade organic pollutants using light from ultra-violet to the visible range. The photocatalysts are synthesized using an easy aqueous route allowing “green conditions” for synthesis. For comparative purposes, the corresponding pure TiO2 and a grafted catalyst are also synthesized and studied. For all samples, a mixture of anatase/brookite TiO2 is obtained, resulting in crystalline materials with low temperature synthesis. The three porphyrin-doped samples prepared in water prove to be efficient photocatalysts for the degradation of p-nitrophenol (PNP) under visible light, and an improvement in photoactivity is observed when the amount of porphyrin increases. The photocatalyst activity is very stable over time as the PNP degradation remains nearly constant after 264 h of testing, showing no leaching of porphyrin. In recycling tests, the grafted sample presents bond breaking between POR-Si and TiO2 and a decrease in photoactivity towards pure TiO2 sample activity. A comparison with the commercial Evonik P25 catalyst shows that the porphyrin-doped TiO2 is nearly 6 times more photoactive under visible light for PNP degradation.
Disciplines :
Chemical engineering Materials science & engineering
Author, co-author :
Mahy, Julien ; Université de Liège - ULiège > Department of Chemical Engineering > Department of Chemical Engineering
Pàez Martinez, Carlos ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Carcel, Carole
Bied, Catherine
Tatton, Andrew
Damblon, Christian ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie biologique structurale
Heinrichs, Benoît ; Université de Liège - ULiège > Department of Chemical Engineering > Génie chimique - Nanomatériaux et interfaces
Wong Chi Man, Michel
Lambert, Stéphanie ; Université de Liège - ULiège > Department of Chemical Engineering > Department of Chemical Engineering
Language :
English
Title :
Porphyrin-based hybrid silica-titania as a visible-light photocatalyst
Publication date :
March 2019
Journal title :
Journal of Photochemistry and Photobiology A: Chemistry
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Fox, M.A., Heterogeneous Photocatalysis. 1995.
Wilson, K.C., Manikandan, E., Ahamed, M.B., Mwakikunga, B.W., Nanocauliflower like structure of CdS thin film for solar cell photovoltaic applications: in situ tin doping by chemical bath deposition technique. J. Alloys Compd. 585 (2014), 555–560, 10.1016/j.jallcom.2013.09.185.
Lokesh, K., Lokesh, K., Kavitha, G., Manikandan, E., Mani, G.K., Kaviyarasu, K., et al. Effective Ammonia detection using n- ZnO / p- NiO heterostructured nanofibers. IEEE Sens. J. 16 (2016), 2477–2483, 10.1109/JSEN.2016.2517085.
Manikandan, E., Murugan, V., Kavitha, G., Babu, P., Maaza, M., Nano fl ower rod wire-like structures of dual metal (Al and Cr) doped ZnO thin fi lms: structural, optical and electronic properties. Mater. Lett. 131 (2014), 225–228, 10.1016/j.matlet.2014.06.008.
Nakata, K., Ochiai, T., Murakami, T., Fujishima, A., Electrochimica Acta Photoenergy conversion with TiO 2 photocatalysis: new materials and recent applications. Electrochim. Acta 84 (2012), 103–111, 10.1016/j.electacta.2012.03.035.
Fujishima, A., Hashimoto, K., Watanabe, T., TiO2 Photocatalysis: Fundamentals and Applications. 1999.
Fujishima, A., Rao, T.N., Tryk, D.A., Titanium dioxide photocatalysis. J. Photochem. Photobiol. C Photochem. Rev. 1 (2000), 1–21.
Fujishima, A., Zhang, X., Tryk, D.A., Surface Science Reports TiO 2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63 (2008), 515–582, 10.1016/j.surfrep.2008.10.001.
Hou, K., Tian, B., Li, F., Bian, Z., Huang, C., Highly crystallized mesoporous TiO 2 films and their applications in dye sensitized solar cells. J. Mater. Chem. 2 (2005), 2414–2420, 10.1039/b417465h.
Periyat, P., Leyland, N., Mccormack, D.E., Colreavy, J., Pillai, S.C., Rapid microwave synthesis of mesoporous TiO 2 for electrochromic displays. J. Mater. Chem., 2010, 3650–3655, 10.1039/b924341k.
Szeifert, J.M., Feckl, J.M., Fattakhova-rohlfing, D., Liu, Y., Kalousek, V., Rathousky, J., et al. Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast Lithium insertion. J. Am. Chem. Soc., 2010, 12605–12611.
Rauf, Ma., Ashraf, S.S., Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 151 (2009), 10–18, 10.1016/j.cej.2009.02.026.
CARP, O., Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32 (2004), 33–177, 10.1016/j.progsolidstchem.2004.08.001.
Mahy, J.G., Léonard, G.L.-M., Pirard, S., Wicky, D., Daniel, A., Archambeau, C., et al. Aqueous sol-gEl synthesis and film deposition methods for the large-scale manufacture of coated steel with self-cleaning properties. J. Solgel Sci. Technol., 81, 2017, 10.1007/s10971-016-4020-5.
Fujishima, A., Honda, K., Photolysis-decomposition of water at the surface of an irradiated semiconductor. Nature 238 (1972), 37–38.
Ollis, D.F., Photocatalytic purification and remediation of contaminated air and water. Comptes Rendus l'Académie Des Sci. 3 (2000), 405–411.
Léonard, G.L., Pàez, C.A., Ramírez, A.E., Mahy, J.G., Heinrichs, B., Interactions between Zn 2 + or ZnO with TiO 2 to produce an ef fi cient photocatalytic, superhydrophilic and aesthetic glass. J. Photochem. Photobiol. A: Chem. 350 (2018), 32–43, 10.1016/j.jphotochem.2017.09.036.
Schneider, J., Matsuoka, M., Takeuchi, M., Zhang, J., Horiuchi, Y., Anpo, M., et al. Understanding TiO 2 photocatalysis: mechanisms and materials. Chem. Rev. 114 (2014), 9919–9986.
Nakata, K., Fujishima, A., TiO 2 photocatalysis: design and applications. J. Photochem. Photobiol. C Photochem. Rev. 13 (2012), 169–189, 10.1016/j.jphotochemrev.2012.06.001.
Léonard, G.L.-M., Malengreaux, C.M., Mélotte, Q., Lambert, S.D., Bruneel, E., Van Driessche, I., et al. Doped sol–gel films vs. Powders TiO2: on the positive effect induced by the presence of a substrate. J. Environ. Chem. Eng. 4 (2016), 449–459, 10.1016/j.jece.2015.11.040.
Braconnier, B., Páez, Ca., Lambert, S., Alié, C., Henrist, C., Poelman, D., et al. Ag- and SiO2-doped porous TiO2 with enhanced thermal stability. Microporous Mesoporous Mater. 122 (2009), 247–254, 10.1016/j.micromeso.2009.03.007.
Anderson, C., Bard, A.J., An improved photocatalyst of TiO2/SiO2 prepared by a sol-gel synthesis. J. Phys. Chem. 99 (1995), 9882–9885, 10.1021/j100024a033.
Gratzel, M., Sol-gel processed TiO2 films for photovoltaic applications. J. Solgel Sci. Technol. 22 (2001), 7–13, 10.1023/A:1011273700573.
Bailon-Garcia, E., Elmouwahidi, A., Alvarez, M.A., Carrasco-Marin, F., Perez-Cadenas, A.F., Maldonado-Hodar, F.J., New carbon xerogel-TiO2 composites with high performance as visible-light photocatalysts for dye mineralization. Appl. Catal. B Environ. 201 (2017), 29–40, 10.1016/j.apcatb.2016.08.015.
Bacsa, R.R., Kiwi, J., Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p -coumaric acid. Appl. Catal. B Environ. 16 (1998), 19–29.
Malengreaux, C.M., Douven, S., Poelman, D., Heinrichs, B., Bartlett, J.R., An ambient temperature aqueous sol–gel processing of efficient nanocrystalline doped TiO2-based photocatalysts for the degradation of organic pollutants. J. Solgel Sci. Technol. 71 (2014), 557–570, 10.1007/s10971-014-3405-6.
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125 (2012), 331–349, 10.1016/j.apcatb.2012.05.036.
C.J. Bodson, B. Heinrichs, L. Tasseroul, C. Bied, J.G. Mahy, M. Wong, Chi Man, et al., Efficient P- and Ag-doped titania for the photocatalytic degradation of waste water organic pollutants, J. Alloys Compd. (n.d.). doi: https://doi.org/10.1016/j.jallcom.2016.04.295.
Asahi, R., Morikawa, T., Irie, H., Ohwaki, T., Nitrogen-doped titanium dioxide as visible-light-Sensitive photocatalyst: designs, developments, and prospects. Chem. Rev. 114 (2014), 9824–9852.
Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis. Chem. Rev. 95 (1995), 69–96, 10.1021/cr00033a004.
Rossi, G., Calizzi, M., Di Cintio, V., Magkos, S., Amidani, L., Pasquini, L., et al. Local structure of V dopants in TiO 2 nanoparticles: X ‑ ray absorption spectroscopy, including Ab-initio and full potential simulations. J. Phys. Chem. C. 120 (2016), 7457–7466, 10.1021/acs.jpcc.5b12045.
Di Paola, A., García-López, E., Marcì, G., Palmisano, L., A survey of photocatalytic materials for environmental remediation. J. Hazard. Mater. 211–212 (2012), 3–29, 10.1016/j.jhazmat.2011.11.050.
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:80- (2001), 269–271.
Harb, M., Sautet, P., Raybaud, P., Anionic or Cationic S ‑ doping in bulk anatase TiO 2: insights on optical absorption from first principles calculations. J. Phys. Chem. C. 117 (2013), 8892–8902.
Patel, N., Dashora, A., Jaiswal, R., Fernandes, R., Yadav, M., Kothari, D.C., et al. Experimental and theoretical investigations on the activity and stability of substitutional and interstitial boron in TiO 2 photocatalyst. J. Phys. Chem. C 119 (2015), 18581–18590, 10.1021/acs.jpcc.5b05290.
Mahy, J.G., Cerfontaine, V., Poelman, D., Devred, F., Gaigneaux, E.M., Heinrichs, B., et al. Highly efficient low-temperature N-doped TiO 2 catalysts for visible light photocatalytic applications. Materials (Basel) 11 (2018), 1–20, 10.3390/ma11040584.
Wu, T., Lin, T., Serpone, N., TiO 2 -Assisted Photodegradation of Dyes. 9. Photooxidation of a Squarylium Cyanine Dye in Aqueous Dispersions under Visible Light Irradiation, 33, 1999, 1379–1387.
Granados, G.O., Páez, C.A.M., Martínez, O.F., Páez-Mozo, E.A., Photocatalytic degradation of phenol on TiO2 and TiO2/Pt sensitized with metallophthalocyanines. Catal. Today 107–108 (2005), 589–594, 10.1016/j.cattod.2005.07.021.
Tasseroul, L., Lambert, S.D., Eskenazi, D., Amoura, M., Páez, C.A., Hiligsmann, S., et al. Degradation of p -nitrophenol and bacteria with TiO 2 xerogels sensitized in situ with tetra (4 -carboxyphenyl) porphyrins. J. Photochem. Photobiol. A Chem. 272 (2013), 90–99, 10.1016/j.jphotochem.2013.08.023.
Liu, G., Jaegermann, W., He, J., Sundstro, V., Sun, L., XPS and UPS Characterization of the TiO2/ZnPcGly Heterointerface: Alignment of Energy Levels. 2002, 5814–5819.
Kathiravan, A., Renganathan, R., Anandan, S., Journal of Colloid and Interface Science Electron transfer dynamics from the singlet and triplet excited states of meso-tetrakis (p -carboxyphenyl) porphyrin into colloidal. J. Colloid Interface Sci. 348 (2010), 642–648, 10.1016/j.jcis.2010.05.002.
Croissant, J., Mauriello-Jimenez, C., Maynadier, M., Cattoen, X., Wong Chi Man, M., Raehm, L., et al. Synthesis of disulfide-based biodegradable bridged silsesquioxane nanoparticles for two- photon imaging and therapy of cancer cells. Chem. Commun. 51 (2015), 12324–12327, 10.1039/C5CC03736K.
Mauriello-Jimenez, C., Croissant, J., Maynadier, M., Cattoen, X., Wong Chi Man, M., Vergnaud, J., et al. Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. J. Mater. Chem. B. 3 (2015), 3681–3684, 10.1039/C5TB00315F.
Mandal, S., Nayak, S.K., Mallampalli, S., Patra, A., Surfactant-assisted porphyrin based hierarchical Nano/Micro assemblies and their e ffi cient photocatalytic behavior. Appl. Mater. Interfaces. 6 (2014), 130–136.
Hod, I., Farha, O.K., Hupp, J.T., Powered by porphyrin packing. Nat. Publ. Gr. 14 (2015), 1192–1193, 10.1038/nmat4494.
Battioni, P., Cardin, E., Louloudi, M., Schollhorn, B., Spyroulias, G.A., Mansuy, D., et al. Metalloporphyrinosilicas: a new class of hybrid organic-inorganic materials acting as selective biomimetic oxidation catalysts. Chem. Commun. 17 (1996), 2037–2038.
Tasseroul, L., Páez, C.A., Lambert, S.D., Eskenazi, D., Applied Catalysis B: environmental Photocatalytic decomposition of hydrogen peroxide over nanoparticles of TiO 2 and Ni (II) -porphyrin-doped TiO 2: a relationship between activity and porphyrin anchoring mode. Appl. Catal. B Environ. 182 (2016), 405–413, 10.1016/j.apcatb.2015.09.042.
Granados-Oliveros, G., Paez-Mozo, E., Martinez Ortega, F., Ferronato, C., Chovelon, J., Degradation of atrazine using metalloporphyrins supported on TiO 2 under visible light irradiation. Appl. Catal. B Environ. 89 (2009), 448–454, 10.1016/j.apcatb.2009.01.001.
Tio, N., Cherian, S., Wamser, C.C., Adsorption and Photoactivity of Tetra (4-carboxyphenyl) porphyrin (TCPP), 50, 2000, 3624–3629.
Ye, L., Pelton, R., Brook, M.A., Biotinylation of TiO 2 nanoparticles and their conjugation with streptavidin. Langmuir 29 (2007), 5630–5637.
Bodson, C.J., Lambert, S.D., Alié, C., Cattoën, X., Pirard, J., Bied, C., et al. Effects of additives and solvents on the gel formation rate and on the texture of P- and Si-doped TiO 2 materials. Microporous Mesoporous Mater. 134 (2010), 157–164, 10.1016/j.micromeso.2010.05.021.
Bodson, C.J., Pirard, S.L., Pirard, R., Tasseroul, L., Bied, C., Wong Chi Man, M., et al. P-doped titania xerogels as efficient UV-Visible photocatalysts. J. Mater. Sci. Chem. Eng. 2 (2014), 17–32.
Páez, C.A., Lambert, S.D., Poelman, D., Pirard, J.P., Heinrichs, B., Improvement in the methylene blue adsorption capacity and photocatalytic activity of H2-reduced rutile-TiO2caused by Ni(II)porphyrin preadsorption. Appl. Catal. B Environ. 106 (2011), 220–227, 10.1016/j.apcatb.2011.05.029.
Min, K.S., Kumar, R.S., Lee, J.H., Kim, K.S., Lee, S.G., Son, Y.A., Synthesis of new TiO2/porphyrin-based composites and photocatalytic studies on methylene blue degradation. Dyes Pigm. 160 (2019), 37–47, 10.1016/j.dyepig.2018.07.045.
Ahmed, M.A., Abou-Gamra, Z.M., Medien, H.A.A., Hamza, M.A., Effect of porphyrin on photocatalytic activity of TiO2nanoparticles toward Rhodamine B photodegradation. J. Photochem. Photobiol. B Biol. 176 (2017), 25–35, 10.1016/j.jphotobiol.2017.09.016.
Chen, S., Shen, F., Novel substituted porphyrins: synthesis, characterization and photocatalytic activity of their TiO2-based composites. J. Incl. Phenom. Macrocycl. Chem. 88 (2017), 229–238, 10.1007/s10847-017-0724-6.
Wang, L., Duan, S., Jin, P., She, H., Huang, J., Lei, Z., et al. Anchored Cu(II) tetra(4-carboxylphenyl)porphyrin to P25 (TiO2) for efficient photocatalytic ability in CO2 reduction. Appl. Catal. B Environ. 239 (2018), 599–608, 10.1016/j.apcatb.2018.08.007.
Biazzotto, J.C., Serra, O.A., Iamamoto, Y., Synthesis and properties of urea porphyrinosilica. J. Non. Solids 273 (2000), 186–192.
Lerouge, F., Cerveau, G., Corriu, R.J.P., Stern, C., Guilard, R., Self-organization of porphyrin units induced by magnetic field during sol – gel polymerization. Chem. Commun. 15 (2007), 1553–1555, 10.1039/b616421h.
Lecloux, A., Exploitation des isothermes d'adsorption et de désorption d'azote pour l’étude de la texture des solides poreux. Mémoires Société R. Des Sci. Liège., 1971, 169–209.
Patterson, a.L., The scherrer formula for X-Ray particle size determination. Phys. Rev. 56 (1939), 978–982, 10.1103/PhysRev.56.978.
Doebelin, N., Kleeberg, R., Profex: a graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 48 (2015), 1573–1580, 10.1107/S1600576715014685.
Madsen, I.C., Finney, R.J., Flann, R.C.A., Frost, M.T., Wilson, B.W., Quantitative analysis of high-alumina refractories using X-ray powder diffraction data and the rietveld method. J. Am. Ceram. Soc. 74 (1991), 619–624.
Mahy, J.G., Lambert, S.D., Leonard, G.L.-M., Zubiaur, A., Olu, P.-Y., Mahmoud, A., et al. Towards a large scale aqueous sol-gel synthesis of doped TiO2: study of various metallic dopings for the photocatalytic degradation of p-nitrophenol. J. Photochem. Photobiol. A: Chem. 329 (2016), 189–202, 10.1016/j.jphotochem.2016.06.029.
KUBELKA, P., Ein Beitrag zur Optik der Farban striche. Z. Tech. Phys. 12 (1931), 593–603 (accessed October 16, 2015) http://ci.nii.ac.jp/naid/10008164867/en/.
Kubelka, P., New contributions to the optics of intensely light-scattering materials. J. Opt. Soc. Am. 38 (1948), 448–457, 10.1364/JOSA.44.000330.
Páez, Ca., Poelman, D., Pirard, J.P., Heinrichs, B., Unpredictable photocatalytic ability of H2-reduced rutile-TiO2 xerogel in the degradation of dye-pollutants under UV and visible light irradiation. Appl. Catal. B Environ. 94 (2010), 263–271, 10.1016/j.apcatb.2009.11.017.
Escobedo Morales, A., Sánchez Mora, E., Pal, U., Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. S. 53 (2007), 18–22 http://www.researchgate.net/publication/229050010_Use_of_diffuse_reflectance_spectroscopy_for_optical_characterization_of_un-supported_nanostructures/file/79e41507eead49bb27.pdf.
Páez, C.A., Liquet, D.Y., Calberg, C., Lambert, S.D., Willems, I., Germeau, A., et al. Study of photocatalytic decomposition of hydrogen peroxide over ramsdellite-MnO2 by O2-pressure monitoring. Catal. Commun. 15 (2011), 132–136, 10.1016/j.catcom.2011.08.025.
Tasseroul, L., Pirard, S.L., Lambert, S.D., Páez, Ca., Poelman, D., Pirard, J.P., et al. Kinetic study of p-nitrophenol photodegradation with modified TiO 2 xerogels. Chem. Eng. J. 191 (2012), 441–450, 10.1016/j.cej.2012.02.050.
Corriu, R.J.P., Moreau, J.J.E., Thepot, P., New mixed organic-inorganic polymers: hydrolysis and polycondensation of bis (t rimet hoxysilyl) organometallic precursors. Chem. Mater. 4 (1992), 1217–1224.
Chan, Y.-J., Kum, B.-G., Park, Y.-C., Kong, E.-H., Jang, H.M., Surface modification of TiO2 nanoparticles with phenyltrimethoxysilane in dye-sensitized solar cells. Bull. Korean Chem. Soc. 35 (2014), 415–418, 10.5012/bkcs.2014.35.2.415.
Glaser, R.H., Wilkes, G.L., Bronnimann, C.E., Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J. Non. Solids 113 (1989), 73–87.
Yao, B., Peng, C., Zhang, W., Zhang, Q., Niu, J., Zhao, J., A novel Fe(III) porphyrin-conjugated TiO2visible-light photocatalyst. Appl. Catal. B Environ. 174–175 (2015), 77–84, 10.1016/j.apcatb.2015.02.030.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.