[en] Interfaces are ubiquitous in materials science, and in devices in particular. As device dimensions are constantly shrinking, understanding the physical properties emerging at interfaces is crucial to exploit them for applications, here for spintronics. Using first-principles techniques and Monte Carlo simulations, we investigate the mutual magnetic interaction at the interface between graphene and an antiferromagnetic semiconductor BaMnO3. We find that graphene deeply affects the magnetic state of the substrate, down to several layers below the interface, by inducing an overall magnetic softening, and switching the in-plane magnetic ordering from antiferromagnetic to ferromagnetic. The graphene-BaMnO3 system presents a Rashba gap 300 times larger than in pristine graphene, leading to a flavor of quantum anomalous Hall effect (QAHE), a hybrid QAHE, characterized by the coexistence of metallic and topological insulating states. These findings could be exploited to fabricate devices that use graphene to control the magnetic configuration of a substrate.
Niu, C.; Peter Grünberg Institut (PGI-1), Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich, JARA, Jülich, D-52425, Germany
Bihlmayer, G.; Peter Grünberg Institut (PGI-1), Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich, JARA, Jülich, D-52425, Germany
Mokrousov, Yuriy; Peter Grünberg Institut (PGI-1), Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich, JARA, Jülich, D-52425, Germany, Institute of Physics, Johannes Gutenberg University Mainz, Mainz, 55099, Germany
Mavropoulos, P.; Peter Grünberg Institut (PGI-1), Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich, JARA, Jülich, D-52425, Germany
Verstraete, Matthieu ; Université de Liège - ULiège > Département de physique > Physique des matériaux et nanostructures
Blügel, S.; Peter Grünberg Institut (PGI-1), Institute for Advanced Simulation (IAS-1), Forschungszentrum Jülich, JARA, Jülich, D-52425, Germany
Language :
English
Title :
Hybrid quantum anomalous Hall effect at graphene-oxide interfaces
M. Cinchetti, V. A. Dediu, and L. E. Hueso, Nat. Mater. 16, 507 (2017). 1476-1122 10.1038/nmat4902
A. Soumyanarayanan, N. Reyren, A. Fert, and C. Panagopoulos, Nature (London) 539, 509 (2017). NATUAS 0028-0836 10.1038/nature19820
J. Varignon, L. Vila, A. Barthélémy, and M. Bibes, Nat. Phys. 14, 322 (2018). 1745-2473 10.1038/s41567-018-0112-1
S. Roche, 2D Mater. 2, 030202 (2015). 2053-1583 10.1088/2053-1583/2/3/030202
L. E. Hueso, J. M. Pruneda, V. Ferrari, G. Burnell, J. P. Valdés-Herrera, B. Simons, P. B. Littlewood, E. Artacho, A. Fert, and N. D. Mathur, Nature (London) 445, 410 (2007). NATUAS 0028-0836 10.1038/nature05507
W. Han, R. K. Kawakami, M. Gmitra, and J. Fabian, Nat. Nanotechnol. 9, 794 (2014). 1748-3387 10.1038/nnano.2014.214
Z. Zanolli and J.-C. Charlier, Phys. Rev. B 81, 165406 (2010). PRBMDO 1098-0121 10.1103/PhysRevB.81.165406
A. Cresti, B. K. Nikolić, J. H. Garcia, and S. Roche, Riv. Nuovo Cimento 39, 587 (2016).
Z. Zanolli and J.-C. Charlier, ACS Nano 6, 10786 (2012). 1936-0851 10.1021/nn304111a
Z. Zanolli, Sci. Rep. 6, 31346 (2016). 2045-2322 10.1038/srep31346
A. Hallal, F. Ibrahim, H. Yang, S. Roche, and M. Chshiev, 2D Mater. 4, 025074 (2017). 2053-1583 10.1088/2053-1583/aa6663
J. C. Leutenantsmeyer, A. A. Kaverzin, M. Wojtaszek, and B. J. van Wees, 2D Mater. 4, 014001 (2017). 2053-1583 10.1088/2053-1583/4/1/014001
D. V. Averyanov, I. S. Sokolov, A. M. Tokmachev, O. E. Parfenov, I. A. Karateev, A. N. Taldenkov, and V. G. Storchak, ACS Appl. Mater. Interfaces 10, 20767 (2018). 1944-8244 10.1021/acsami.8b04289
K. Song, D. Soriano, A. W. Cummings, R. Robles, P. Ordejón, and S. Roche, Nano Lett. 18, 2033 (2018). NALEFD 1530-6984 10.1021/acs.nanolett.7b05482
A. W. Cummings, J. H. Garcia, J. Fabian, and S. Roche, Phys. Rev. Lett. 119, 206601 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.119.206601
L. A. Benítez, J. F. Sierra, W. Savero Torres, A. Arrighi, F. Bonell, M. V. Costache, and S. O. Valenzuela, Nat. Phys. 14, 303 (2018). 1745-2473 10.1038/s41567-017-0019-2
J. Ding, Z. Qiao, W. Feng, Y. Yao, and Q. Niu, Phys. Rev. B 84, 195444 (2011). PRBMDO 1098-0121 10.1103/PhysRevB.84.195444
M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian, Phys. Rev. B 80, 235431 (2009). PRBMDO 1098-0121 10.1103/PhysRevB.80.235431
E. J. Cussen and P. D. Battle, Chem. Mater. 12, 831 (2000). CMATEX 0897-4756 10.1021/cm991144j
J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002). JCOMEL 0953-8984 10.1088/0953-8984/14/11/302
http://www.flapw.de.
T. Moriya, Phys. Rev. 120, 91 (1960). PHRVAO 0031-899X 10.1103/PhysRev.120.91
J. Z. Zhao, W. Fan, M. J. Verstraete, Z. Zanolli, J. Fan, X. B. Yang, H. Xu, and S. Y. Tong, Phys. Rev. Lett. 117, 116101 (2016). PRLTAO 0031-9007 10.1103/PhysRevLett.117.116101
J. Z. Zhao, W. Fan, M. J. Verstraete, Z. Zanolli, J. Fan, X. B. Yang, H. Xu, and S. Y. Tong, Phys. Rev. Lett. 118, 239602 (2017). PRLTAO 0031-9007 10.1103/PhysRevLett.118.239602
S. Lemal, N. Nguyen, J. de Boor, P. Ghosez, J. Varignon, B. Klobes, R. P. Hermann, and M. J. Verstraete, Phys. Rev. B 92, 205204 (2015). PRBMDO 1098-0121 10.1103/PhysRevB.92.205204
Z. Qiao, W. Ren, H. Chen, L. Bellaiche, Z. Zhang, A. H. MacDonald, and Q. Niu, Phys. Rev. Lett. 112, 116404 (2014). PRLTAO 0031-9007 10.1103/PhysRevLett.112.116404
A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 185, 2309 (2014). CPHCBZ 0010-4655 10.1016/j.cpc.2014.05.003
H. Zhang, F. Freimuth, G. Bihlmayer, M. LeŽaić, S. Blügel, and Y. Mokrousov, Phys. Rev. B 87, 205132 (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.205132
H. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Phys. Rev. Lett. 108, 056802 (2012). PRLTAO 0031-9007 10.1103/PhysRevLett.108.056802
A. Manchon, I. Miron, T. Jungwirth, J. Sinova, J. Zelezny, A. Thiaville, K. Garello, and P. Gambardella, arXiv:1801.09636.
J. P. Hanke, F. Freimuth, C. Niu, S. Blügel, and Y. Mokrousov, Nat. Commun. 8, 1479 (2017). 2041-1723 10.1038/s41467-017-01138-7
L. Smejkal, Y. Mokrousov, B. Yan, and A. MacDonald, Nat. Phys. 14, 242 (2018). 1745-2473 10.1038/s41567-018-0064-5
J. Zelezny, P. Wadley, K. Olejnik, A. Hoffmann, and H. Ohno, Nat. Phys. 14, 220 (2018). 1745-2473 10.1038/s41567-018-0062-7
J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). PRBMDO 0163-1829 10.1103/PhysRevB.23.5048
D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980). PRLTAO 0031-9007 10.1103/PhysRevLett.45.566
J. Varignon and P. Ghosez, Phys. Rev. B 87, 140403 (R) (2013). PRBMDO 1098-0121 10.1103/PhysRevB.87.140403
J. Varignon (private communication).
M. Callsen, V. Caciuc, N. Kiselev, N. Atodiresei, and S. Blügel, Phys. Rev. Lett. 111, 106805 (2013). PRLTAO 0031-9007 10.1103/PhysRevLett.111.106805
J. Brede, N. Atodiresei, V. Caciuc, M. Bazarnik, A. Al-Zubi, S. Blügel, and R. Wiesendanger, Nat. Nanotechnol. 9, 1018 (2014). 1748-3387 10.1038/nnano.2014.235
R. Friedrich, V. Caciuc, N. S. Kiselev, N. Atodiresei, and S. Blügel, Phys. Rev. B 91, 115432 (2015). PRBMDO 1098-0121 10.1103/PhysRevB.91.115432
R. Friedrich, V. Caciuc, N. Atodiresei, and S. Blügel, Phys. Rev. B 92, 195407 (2015). PRBMDO 1098-0121 10.1103/PhysRevB.92.195407