[en] In the framework of the Canaries‐Iberian marine ecosystem Exchanges (CAIBEX) experiment, an interdisciplinary high‐resolution survey was conducted in the NW African region of Cape Ghir (30°38′N) during August 2009. The anatomy of a major filament is investigated on scales down to the submesoscale using in situ and remotely sensed data. The filament may be viewed as a system composed of three intimately connected structures: a small, shallow, and cold filament embedded within a larger, deeper, and cool filament and an intrathermocline anticyclonic eddy (ITE). The cold filament, which stretches 110 km offshore, is a shallow feature 60 m deep and 25 km wide, identified by minimal surface temperatures and rich in chlorophyll a. This structure comprises two asymmetrical submesoscale (∼18 km) fronts with jets flowing in opposite directions. The cold filament is embedded near the equatorward boundary of a much broader region of approximately 120 km width and 150 m depth that forms the cool filament and stretches at least 200 km offshore. This cool region, partly resulting from the influence of cold filament, is limited by two asymmetrical mesoscale (∼50 km) frontal boundaries. At the ITE, located north of the cold filament, we observe evidence of downwelling as indicated by a relatively high concentration of particles extending from the surface to more than 200 m depth. We hypothesize that this ITE may act as a sink of carbon and thus the filament system may serve dual roles of offshore carbon export and carbon sink.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Sangrà, Pablo; Universidad de Las Palmas de Gran Canaria
Troupin, Charles ; Sistema d’observació i predicció costaner de les Illes Balears (SOCIB) > Data Center Facility
Barreiro-González, Beatriz
Barton, Eric Desmond; Instituto de Investigaciones Marinas (CSIC)
Orbi, Abdellatif
Arístegui, Javier; Universidad de Las Palmas de Gran Canaria
Language :
English
Title :
The Cape Ghir filament system in August 2009 (NW Africa)
Álvarez-Salgado, X., J. Arístegui, E. D. Barton, and, D. A. Hansell, (2007), Contribution of upwelling filaments to offshore carbon export in the subtropical Northeast Atlantic Ocean, Limnol. Oceanogr., 52, 1287-1292.
Beardsley, R. C., and, S. J. Lentz, (1987), The Coastal Ocean Dynamics Experiment collection: An introduction, J. Geophys. Res., 92, 1455-1463.
Bernstein, R. L., L. Breaker, and, R. Whritner, (1977), California Current eddy formation: Ship, air, and satellite results, Science, 195, 353-359.
Brink, K., (1983), The near-surface dynamics of coastal upwelling, Prog. Oceanogr., 12, 223-257.
Brink, K. H., and, T. J. Cowles, (1991), The coastal transition zone experiment, J. Geophys. Res., 96, 14,637-14,647.
Brink, K. H., D. W. Stuart, and, J. C. Van Leer, (1984), Observations of the coastal upwelling region near 30′N of California: Spring 198,. J. Phys. Oceanogr., 14, 378-391.
Castelao, R. M, and, J. A. Barth, (2007), The role of wind stress curl in jet separation at a cape, J. Phys. Oceanogr., 37, 2652-2671.
Chelton, D., and, S. P. Xie, (2010), Coupled ocean-atmosphere interaction at oceanic mesoscales, Oceanogr. Mag., 4, 52-69.
Chelton, D. B., R. A. Deszoeke, M. G. Schlax, K. Naggar, and, N. Stwertz, (1998), Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433-460.
Chelton, D. B., M. G. Schlax, and, R. M. Samelson, (2007), Summertime coupling between sea surface temperature and wind stress in the California Current System, J. Phys. Oceanogr., 37, 495-517.
Collins, C. A., N. Gareld, T. A. Rago, F. W. Rishmiller, and, E. Carter, (2000), Mean structure of the inshore countercurrent and California undercurrent of Pt. Sur, California, Deep Sea Res., Part II, 47, 765-782.
Cornuelle, B. D., T. K. Chereskin, P. P. Niiler, M. Y. Morris, and, D. L. Musgrave, (2000), Observations and modeling of a California undercurrent eddy, J. Geophys. Res., 105, 1227-1243.
Dewey R. K., J. N. Moum, C. A. Paulson, D. R. Caldwell, and, S. D. Pierce, (1991), Structure and dynamics of a coastal filament. J. Geophys. Res., 96, 14885-1490.
Feldman, G. C., and, C. R. McClain, (2010), Ocean Color Web, MODIS Aqua Reprocessing NASA Goddard Space Flight Center, edited by, N. Kuring, and, S. W. Bailey,. [Available at http://oceancolor.gsfc.nasa.gov.]
Firing, E., J. Ranada, and, P. Caldwell, (1985), Processing ADCP Data with the CODAS Software System Version 3.1, Joint Inst. for Mar. and Atmos. Res./NODC, Univ. of Hawaii at Manoa, Honolulu.
Flament, P,. (1985), The evolving structure of an upwelling filament, J. Geophys. Res., 90, 11,765-11,778.
Gabric, A. J., L. García, L. van Camp, L. Nykjaer, W. Eifler, and, W. Schrimpf, (1993), Offshore export of shelf production in the Cap Blanc giant filament as derived from CZCS imagery, J. Geophys. Res., 98, 4697-4712.
García-Muñoz, M., J. Arístegui, M. F. Montero, and, E. D. Barton, (2004), Distribution and transport of organic matter along a filament-eddy system in the Canaries-NW Africa coastal transition zone region, Prog. Oceanogr., 62 (2-4), 115-129.
García-Muñoz, M., J. Arístegui, J. L. Pelegrí, A. Antoranz, A. Ojeda, and, M. Torres, (2005), Exchange of carbon by an upwelling filament off Cape Guir (NW Africa), J. Mar. Syst., 54, 83-95.
Garfield, N., C. A. Collins, R. G. Paquette, and, E. Carter, (1999), Lagrangian exploration of the California undercurrent, 1992-1995, J. Phys. Oceanogr., 29, 560-583.
Garfield, N., M. E. Maltrud, C. A. Collins, T. A. Rago, and, R. G. Paquette, (2001), Lagrangian flow in the California undercurrent, an observation and model comparison, J. Mar. Syst., 29 (1-4), 201-220.
Gaube, P., D. B. Chelton, P. J. Strutton, and, M. J. Behrenfeld, (2013), Satellite observations of chlorophyll, phytoplankton biomass and Ekman pumping in nonlinear mesoscale eddies, J. Geophys. Res. Oceans, 118, 6349-6370, doi: 10.1002/2013JC009027.
Gordon, A. L., C. F. Giulivi, C. M. Lee, H. H. Furey, A. Bower, and, L. Talley, (2002), Japan/East Sea intrathermocline eddies, J. Phys. Oceanogr., 32 (6), 1960-1974.
Hagen, E., C. Zülicke, and, R. Feistal, (1996), Near surface structures in the Cape Ghir filament off Morocco, Oceanol. Acta, 19, 577-598.
Hasegawa, D., H. Yamazaki, R. G. Lueck, and, L. Seuront, (2004), How islands stir and fertilize the upper ocean, Geophys. Res. Lett., 31, L16303, doi: 10.1029/2004GL020143.
Haynes, R., E. D. Barton, and, I. Pilling, (1993), Development, persistence, and variability of upwelling filaments off the Atlantic coast of the Iberian Peninsula, J. Geophys. Res., 98, 22,681-22,692.
Holm-Hansen, O., C. J. Lorenzen, R. W. Holmes, and, J. D. H. Strickland, (1965), Fluorometric determination of chlorophyll, J. Cons. Cons. Int. Explor. Mer, 30, 3-15.
Hormazabal, S., V. Combes, C. E. Morales, M. A. Correa-Ramirez, E. Di Lorenzo, and, S. Nuñez, (2013), Intrathermocline eddies in the coastal transition zone off central Chile (31-41-S), J. Geophys. Res. Oceans, 118, 1-11, doi: 10.1002/jgrc.20337.
Huyer, A., J. A. Barth, P. M. Kosro, R. K. Shearman, and, R. L. Smith, (1998), Upper ocean water mass characteristics of the California Current, summer 1993, Deep Sea Res., Part II, 45, 1411-1442.
Ikeda, M., and, W. J. Emery, (1984), Satellite observations and modeling of meanders in the California Current system of Oregon and Northern California, J. Phys. Oceanogr., 14, 1434-1450.
Jin, X., C. Dong, J. Kurian, J. C. McWilliams, D. B. Chelton, and, Z. Li, (2009), SST-windinteraction in coastal upwelling: Oceanic simulation with empirical coupling, J. Phys. Oceanogr., 39, 2957-2970.
Johnson, G. C., and, K. E. McTaggart, (2010), Equatorial Pacific 13-C water eddies in the Eastern Subtropical South Pacific Ocean, J. Phys. Oceanogr., 40 (1), 226-236.
Kadko, D. C., L. Washburn, and, B. H. Jones, (1991), Evidence of subduction within cold filaments of the northern California coastal transition zone, J. Geophys. Res., 96 (C8), 14,909-14,926.
Kelly, K., (1986), The influence of winds and topography on sea surface temperature patterns over the Northern California slope, J. Geophys. Res., 90, 11,783-11,798.
Kosro, P. M., and, A. Huyer, (1986), CTD and velocity surveys of seaward jets o northern California, July 1981 and 1982, J. Geophys. Res., 91, 7680-7690.
Kostianoy, A. G., and, I. M. Belkin, (1989), A survey of observations on intrathermocline eddies in the world ocean, in Mesoscale/Synoptic Coherent Structures in Geophysical Turbulence, Elsevier Oceanogr. Ser., vol. 50, edited by, J. C. J. Nihoul, and, B. M. Jamart, pp. 821-841, Elsevier, Amsterdam, Netherlands.
Lutjeharms, J. R. E., F. A. Shillington, and, C. M. Duncombe Rae, (1991), Observations of extreme upwelling filaments in the Southeast Atlantic Ocean, Science, 253, 774-776.
Machín, F., A. Hernández-Guerra, and, J. L. Pelegrí, (2006), Mass fluxes in the Canary basin, Prog. Oceanogr., 70, 416-447.
Mason, E., F. Colas, J. Molemaker, A. F. Shchepetkin, C. Troupin, J. C. McWilliams, P. Sangrà, and, J. L. Pelegrí, (2011), Seasonal variability of the Canary Current: A numerical study, J. Geophys. Res., 116, C00601, doi: 10.1029/2010JC006665.
Meunier, T., E. D. Barton, B. Barreiro, and, R. Torres, (2012), Upwelling filaments off Cap Blanc: Interaction of the NW African upwelling current and the Cape Verde frontal zone eddy field?, J. Geophys. Res., 117, C08031, doi: 10.1029/2012JC007905.
Mooers, C. N. K., and, A. R. Robinson, (1984), Turbulent jets and eddies in the California Current and inferred cross-shore transports, Science, 223, 51-53.
Nauw, J. J., H. M. van Aken, J. R. E. Lutjeharms, and, W. P. M. de Ruijter, (2006), Intrathermocline eddies in the Southern Indian Ocean, J. Geophys. Res., 111, C03006, doi: 10.1029/2005JC002917.
O'Neill, L. W., D. B. Chelton, and, S. K. Esbensen, (2012), Covariability of surface wind and stress responses to sea surface temperature fronts, J. Clim., 25, 5916-5942.
Pelegrí, J. L., et al., (2005), Hydrographic cruises o northwest Africa: The Canary Current and the Cape Ghir region, J. Mar. Syst., 54, 39-63.
Peliz, A., A. M. P. Santos, P. B. Oliveira, and, J. Dubert, (2004), Extreme cross-shelf transport induced by eddy interactions southwest of Iberia in winter 2001, Geophys. Res. Lett., 31, L08301, doi: 10.1029/2004GL019618.
Pérez-Rodríguez, P., J. L. Pelegrí, and, A. Marrero-Díaz, (2001). Dynamical characteristics of the Cape Verde frontal zone, Sci. Mar., 65 (S1), 241-250.
Pezzi, L. P., R. B. Souza, M. S. Dourado, C. A. E. Garcia, M. M. Mata, and, M. A. F. Silva-Dias, (2005), Ocean-atmosphere in situ observations at the Brazil-Malvinas confluence region, Geophys. Res. Lett., 32, L22603, doi: 10.1029/2005GL023866.
Ramp, S. R., P. F. Jessen, K. H. Brink, P. P. Niiler, F. L. Daggett, and, J.S. Best, (1991). The physical structure of cold filaments near Point Arena, California, during June 1987, J. Geophys. Res., 96 (C8), 14,859-14,883.
Sánchez, R. F., P. Relvas, A. Martinho, and, P. Miller, (2008), Physical description of an upwelling filament west of Cape St. Vincent in late October 2004, J. Geophys. Res., 13, C07044, doi: 10.1029/2007JC004430.
Small, R.J., S. P. deSzoeke, S. P. Xie, L. O'Neill, H. Seo, Q. Song, P. Cornillon, M. Spall, and, S. Minobe, (2008), Air-sea interaction over ocean fronts and eddies, Dyn. Atmos. Oceans, 45, 274-319.
Strub, P. T., P. M. Kosro, and, Huyer, (1991). The nature of cold filaments in the California Current system, J. Geophys. Res., 96, 14,743-14,768.
Troupin, C., E. Mason, J. M. Beckers, and, P. Sangrà, (2012), Generation of the Cape Ghir upwelling filament: A numerical study, Ocean Modell., 41, 1-15.
Vélez-Belchi, P., A. Hernández-Guerra, A. Gonzalez-Pola, E. Fraile, C. A. Collins, and, F. Machín, (2012), The deep Canary poleward undercurrent, Abstract #OS21A-1675 presented at 2012 Fall Meeting, AGU, San Francisco, Calif., Dec.
Zenk, W., B. Klein, and, M. Schroder, (1991). Cape Verde frontal zone, Deep Sea Res., Part A, 38 (S1), 505-530.