[en] Laboratory experiments are a viable approach for improving process understanding and generating data for the validation of computational models. However, laboratoryscale models of urban flooding in street networks are often distorted, i.e. different scale factors are used in the horizontal and vertical directions. This may result in artefacts when transposing the laboratory observations to the prototype scale (e.g. alteration of secondary currents or of the relative importance of frictional resistance). The magnitude of such artefacts was not studied in the past for the specific case of urban flooding. Here, we present a preliminary assessment of these artefacts based on the reanalysis of two recent experimental datasets related to flooding of a group of buildings and of an
entire urban district, respectively. The results reveal that, in the tested configurations, the influence of model distortion on the upscaled values of water depths and discharges are both of the order of 10 %. This research contributes to the advancement of our knowledge of small-scale physical processes involved in urban flooding, which are either explicitly modelled or parametrized in urban hydrology models.
Research Center/Unit :
UEE - Urban and Environmental Engineering - ULiège
Disciplines :
Civil engineering
Author, co-author :
Li, Xuefang ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Erpicum, Sébastien ; Université de Liège - ULiège > Scientifiques attachés au Doyen (Sc.appliquées)
Mignot, Emmanuel; INSA Lyon
Finaud-Guyot, Pascal
Archambeau, Pierre ; Université de Liège - ULiège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Bruwier, Martin ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Pirotton, Michel ; Université de Liège - ULiège > Département ArGEnCo > HECE (Hydraulics in Environnemental and Civil Engineering)
Dewals, Benjamin ; Université de Liège - ULiège > Département ArGEnCo > Hydraulics in Environmental and Civil Engineering
Language :
English
Title :
Technical note: Laboratory modelling of urban flooding: strengths and challenges of distorted scale models
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Araud, Q.: Simulation des écoulements en milieu urbain lors d'un événement pluvieux extrême, Université de Strasbourg, 2012.
Arrault, A., Finaud-Guyot, P., Archambeau, P., Bruwier, M., Erpicum, S., Pirotton, M., and Dewals, B.: Hydrodynamics of long-duration urban floods: experiments and numerical modelling, Nat. Hazards Earth Syst. Sci., 16, 1413-1429, https://doi.org/10.5194/nhess-16-1413-2016, 2016.
Bazin, P.-H., Mignot, E., and Paquier, A.: Computing flooding of crossroads with obstacles using a 2D numerical model, J. Hydraul. Res., 55, 72-84, https://doi.org/10.1080/00221686.2016.1217947, 2017.
Brown, R. and Chanson, H.: Suspended sediment properties and suspended sediment flux estimates in an inundated urban environment during a major flood event, Water Resour. Res., 48, W11523, doi:10.1029/2012WR012381, 2012.
Brown, R. and Chanson, H.: Turbulence and suspended sediment measurements in an urban environment during the Brisbane River flood of january 2011, J. Hydraul. Eng., 139, 244-253, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000666, 2013.
Chanson, H.: 14-Physical modelling of hydraulics, in: Hydraulics of Open Channel Flow (Second Edition), edited by: Chanson, H., 253-274, Butterworth-Heinemann, Oxford, 2004.
Chen, Y., Zhou, H., Zhang, H., Du, G., and Zhou, J.: Urban flood risk warning under rapid urbanization, Environ. Res., 139, 3-10, https://doi.org/10.1016/j.envres.2015.02.028, 2015.
Djordjevic, S., Saul, A. J., Tabor, G. R., Blanksby, J., Galam-bos, I., Sabtu, N., and Sailor, G.: Experimental and numerical investigation of interactions between above and below ground drainage systems, Water Sci. Technol., 67, 535-542, https://doi.org/10.2166/wst.2012.570, 2013.
Dottori, F., Di Baldassarre, G., and Todini, E.: Detailed data is welcome, but with a pinch of salt: Accuracy, precision, and uncertainty in flood inundation modeling, Water Resour. Res., 49, 6079-6085, 2013.
Dottori, F., Figueiredo, R., Martina, M. L. V., Molinari, D., and Scorzini, A. R.: INSYDE: a synthetic, probabilistic flood damage model based on explicit cost analysis, Nat. Hazards Earth Syst. Sci., 16, 2577-2591, https://doi.org/10.5194/nhess-16-2577-2016, 2016.
Erpicum, S., Tullis, B. P., Lodomez, M., Archambeau, P., De-wals, B. J., and Pirotton, M.: Scale effects in physical piano key weirs models, J. Hydraul. Res., 54, 692-698, https://doi.org/10.1080/00221686.2016.1211562, 2016.
Finaud-Guyot, P., Garambois, P.-A., Araud, Q., Lawniczak, F., François, P., Vazquez, J., and Mosé, R.: Experimental insight for flood flow repartition in urban areas, Urban Water J., 15, 242-250, https://doi.org/10.1080/1573062X.2018.1433861, 2018.
Gaines, J. M.: Flooding: Water potential, Nature, 531, 54-55, 2016.
Güney, M. S., Tayfur, G., Bombar, G., and Elci, S.: Dis-torted Physical Model to Study Sudden Partial Dam Break Flows in an Urban Area, J. Hydraul. Eng., 140, 05014006, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000926, 2014.
Heller, V.: Scale effects in physical hydraulic engineering models, J. Hydraul. Res., 49, 293-306, https://doi.org/10.1080/00221686.2011.578914, 2011.
Heller, V., Hager, W. H., and Minor, H.-E.: Scale effects in subaerial landslide generated impulse waves, Exp. Fluids, 44, 691-703, https://doi.org/10.1007/s00348-007-0427-7, 2008.
Hettiarachchi, S., Wasko, C., and Sharma, A.: Increase in flood risk resulting from climate change in a developed urban watershed-the role of storm temporal patterns, Hydrol. Earth Syst. Sci., 22, 2041-2056, https://doi.org/10.5194/hess-22-2041-2018, 2018.
Ichiba, A., Gires, A., Tchiguirinskaia, I., Schertzer, D., Bompard, P., and Ten Veldhuis, M.-C.: Scale effect challenges in urban hydrology highlighted with a distributed hydrological model, Hy-drol. Earth Syst. Sci., 22, 331-350, https://doi.org/10.5194/hess-22-331-2018, 2018.
Ishigaki, T., Keiichi, T., and Kazuya, I.: Hydraulic model tests of inundation in urban area with underground space, Theme B, Proc. of XXX IAHR Cogress, Greece, available from: https://ci.nii.ac.jp/naid/10029665177/en/, 487-493, 2003.
Jung, S., Kang, J., Hong, I., and Yeo, H.: Case study: Hydraulic model experiment to analyze the hydraulic features for installing floating islands, Sci. Res., 4, 90-99, https://doi.org/10.4236/eng.2012.42012, 2012.
Kreibich, H., Van Den Bergh, J. C. J. M., Bouwer, L. M., Bubeck, P., Ciavola, P., Green, C., Hallegatte, S., Logar, I., Meyer, V., Schwarze, R., and Thieken, A. H.: Costing natural hazards, Nat. Clim. Change, 4, 303-306, 2014.
LaRocque, L. A., Elkholy, M., Chaudhry, M. H., and Imran, J.: Experiments on Urban Flooding Caused by a Levee Breach, J. Hydraul. Eng., 139, 960-973, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000754, 2013.
Lee, S., Nakagama, H., Kawaike, K., and Zhang, H.: Experimental validation pf interaction model at storm drain for development of intergrated urbain inundation model, J. Jpn. Soc. Lubr. Eng., 69, 109-114, https://doi.org/10.2208/jscejhe.69.I_109, 2013.
Lehmann, J., Coumou, D., and Frieler, K.: Increased record-breaking precipitation events under global warming, Clim. Change, 132, 501-515, https://doi.org/10.1007/s10584-015-1434-y, 2015.
Li, X., Erpicum, S., Bruwier, M., Mignot, E., Finaud-Guyot, P., Archambeau, P., Pirotton, M., and Dewals, B.: Supporting data for: "Laboratory modelling of urban flooding: strengths and challenges of distorted scale models" (Data set), https://doi.org/10.5281/zenodo.2586900, 2019.
Lipeme Kouyi, G., Rivière, N., Vidalat, V., Becquet, A., Chocat, B., and Guinot, V.: Urban flooding: One-dimensional modelling of the distribution of the discharges through cross-road intersections accounting for energy losses, Water Sci. Technol., 61, 2021-2026, https://doi.org/10.2166/wst.2010.133, 2010.
Liu, D.: Water supply: China's sponge cities to soak up rainwater, Nature, 537, 307, https://doi.org/10.1038/537307c, 2016.
Lopes, P., Leandro, J., Carvalho, R. F., Pascoa, P., and Martins, R.: Numerical and experimental investigation of a gully under surcharge conditions, Urban Water J., 12, 468-476, https://doi.org/10.1080/1573062X.2013.831916, 2013.
Lopes, P., Carvalho, R. F., and Leandro, J.: Numerical and exper-imental study of the fundamental flow characteristics of a 3-D gully box under drainage, Water Sci. Technol., 75, 2204-2215, https://doi.org/10.2166/wst.2017.071, 2017.
Mallakpour, I. and Villarini, G.: The changing nature of flooding across the central United States, Nat. Clim. Change, 5, 250-254, https://doi.org/10.1038/nclimate2516, 2015.
Martins, R., Rubinato, M., Kesserwani, G., Leandro, J., Djord-jevic, S., and Shucksmith, J. D.: On the Characteristics of Velocities Fields in the Vicinity of Manhole Inlet Grates During Flood Events, Water Resour. Res., 54, 6408-6422, https://doi.org/10.1029/2018WR022782, 2018.
Mignot, E., Paquier, A., and Rivière, N.: Experimental and numerical modeling of symmetrical four-branch supercritical cross junction flow, J. Hydraul. Res., 46, 723-738, https://doi.org/10.3826/jhr.2008.2961, 2008.
Mignot, E., Zeng, C., Dominguez, G., Li, C.-W., Rivière, N., and Bazin, P.-H.: Impact of topographic obstacles on the discharge distribution in open-channel bifurcations, J. Hydrol., 494, 10-19, https://doi.org/10.1016/j.jhydrol.2013.04.023, 2013.
Mignot, E., Li, X., and Dewals, B.: Experimental modelling of urban flooding: A review, J. Hydrol., 568, 334-342, https://doi.org/10.1016/j.jhydrol.2018.11.001, 2019.
Molinari, D. and Scorzini, A. R.: On the influence of input data quality to Flood Damage Estimation: The performance of the IN-SYDE model, Water, 9, 688, https://doi.org/10.3390/w9090688, 2017.
Moy de Vitry, M., Dicht, S., and Leitão, J. P.: floodX: urban flash flood experiments monitored with conventional and alternative sensors, Earth Syst. Sci. Data, 9, 657-666, https://doi.org/10.5194/essd-9-657-2017, 2017.
Novak, P.: Scaling Factors and Scale Effects in Modelling Hydraulic Structures, in: Symposium on Scale Effects in Modelling Hydraulic Structures, edited by: Kobus, H., International Association for Hydraulic Reasearch (IAHR), 0.3-1-0.3-5, 1984.
Ozdemir, H., Sampson, C. C., de Almeida, G. A. M., and Bates, P. D.: Evaluating scale and roughness effects in urban flood modelling using terrestrial LIDAR data, Hydrol. Earth Syst. Sci., 17, 4015-4030, https://doi.org/10.5194/hess-17-4015-2013, 2013.
Park, H., Cox, D. T., Lynett, P. J., Wiebe, D. M., and Shin, S.: Tsunami inundation modeling in constructed environments: A physical and numerical comparison of free-surface elevation, velocity, and momentum flux, Coast. Eng., 79, 9-21, https://doi.org/10.1016/j.coastaleng.2013.04.002, 2013.
Ranieri, G.: The surf zone distortion of beach profiles in smalle-scale coastal models, J. Hydraul. Res., 45, 261-269, https://doi.org/10.1080/00221686.2007.9521761, 2007.
Rivière, N., Travin, G., and Perkins, R. J.: Subcritical open channel flows in four branch intersections, Water Resour. Res., 47, W10517, https://doi.org/10.1029/2011WR010504, 2011.
Rivière, N., Travin, G., and Perkins, R. J.: Transcritical flows in three and four branch open-channel intersections, J. Hydraul. Eng., 140, 04014003, https://doi.org/10.1061/(ASCE)HY.1943-7900.0000835, 2014.
Rubinato, M., Martins, R., Kesserwani, G., Leandro, J., Djordje-vic, S., and Shucksmith, J.: Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions, J. Hydrol., 552, 421-432, https://doi.org/10.1016/j.jhydrol.2017.06.024, 2017.
Sharp, J. J. and Khader, M. H. A.: Scale effects in Harbour Models Invovling Permeable Rubble Mound Structures, in: Symposium on Scale Effects in Modelling Hydraulic Structures, edited by: Kobus, H., International Association for Hydraulic Reasearch (IAHR), 7.12-1-.12-5, 1984.
Smith, G. P., Rahman, P. F., and Wasko, C.: A comprehen-sive urban floodplain dataset for model benchmarking, Inter-national Journal of River Basin Management, 14, 345-356, https://doi.org/10.1080/15715124.2016.1193510, 2016.
Testa, G., Zuccala, D., Alcrudo, F., Mulet, J., and Soares-Frazão, S.: Flash flood flow experiment in a simplified urban district, J. Hydraul. Res., 45, 37-44, https://doi.org/10.1080/00221686.2007.9521831, 2007.
UNISDR: The human cost of weather related disasters, CRED 1995-2015, United Nations, Geneva, 2015.
Velickovic, M., Zech, Y., and Soares-Frazão, S.: Steady-flow experiments in urban areas and anisotropic porosity model, J. Hydraul. Res., 55, 85-100, https://doi.org/10.1080/00221686.2016.1238013, 2017.
Wakhlu, O. N.: Scale Effects in Hydraulic Model Studies, in: Symposium on Scale Effects in Modelling Hydraulic Structures, edited by: Kobus, H., International Association for Hydraulic Reasearch (IAHR), 2.13-1-2.13-6, 1984.
Wright, N.: Advances in flood modelling helping to reduce flood risk, Proceedings of the Institution of Civil Engineers: Civil Engineering, 167, 52-52, https://doi.org/10.1680/cien.2014.167.2.52, 2014.
Yen, B. C.: Open channel flow resistance, J. Hydraul. Eng., 128, 20-39, 2002.
Zhou, Q., Leng, G., and Huang, M.: Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations, Hydrol. Earth Syst. Sci., 22, 305-316, https://doi.org/10.5194/hess-22-305-2018, 2018.
Zhou, Q., Yu, W., Chen, A. S., Jiang, C., and Fu, G.: Experimental Assessment of Building Blockage Effects in a Simplified Urban District, Procedia Engineer., 154, 844-852, 2016.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.