Schaller, J.-P., Keller, D., Poget, L., Pratte, P., Kaelin, E., McHugh, D., Cudazzo, G., Smart, D., Tricker, A.R., Gautier, L., Yerly, M., Pires, R.R., Le Bouhellec, S., Ghosh, D., Hofer, I., Garcia, E., Vanscheeuwijck, P., Maeder, S., Evaluation of the tobacco heating system 2.2. Part 2: chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul. Toxicol. Pharmacol. 81 (2016), S27–S47.
Forster, M., Fiebelkorn, S., Yurteri, C., Mariner, D., Liu, C., Wright, C., McAdam, K., Murphy, J., Proctor, C., Assessment of novel tobacco heating product THP1.0. Part 3: Comprehensive chemical characterisation of harmful and potentially harmful aerosol emissions. Regul. Toxicol. Pharmacol. 93 (2018), 14–33.
Li, X., Luo, Y., Jiang, X., Zhang, H., Zhu, F., Hu, S., Hou, H., Hu, Q., Pang, Y., Chemical analysis and simulated pyrolysis of tobacco heating system 2.2 compared to conventional cigarettes. Nicotine Tob. Res., 2018, 1–8.
Savareear, B., Lizak, R., Brokl, M., Wright, C., Liu, C., Focant, J.-F., Headspace solid-phase microextraction coupled to comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry for the analysis of aerosol from tobacco heating product. J. Chromatogr. A 1520 (2017), 135–142.
Savareear, B., Brokl, M., Wright, C., Focant, J.-F., Thermal desorption comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry for vapour phase mainstream tobacco smoke analysis. J. Chromatogr. A 1525 (2017), 126–137.
Brokl, M., Bishop, L., Wright, C.G., Liu, C., McAdam, K., Focant, J.F., Multivariate analysis of mainstream tobacco smoke particulate phase by headspace solid-phase micro extraction coupled with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J. Chromatogr. A 1370 (2014), 216–229.
Ye, Q., Development of solid-phase microextraction followed by gas chromatography-mass spectrometry for rapid analysis of volatile organic chemicals in mainstream cigarette smoke. J. Chromatogr. A 1213 (2008), 239–244.
Simonavicius, E., McNeill, A., Shahab, L., Brose, L.S., Heat-not-burn tobacco products: a systematic literature review. Tob. Control 0 (2018), 1–13.
Dong, J.-Z., Glass, J.N., Moldoveanu, S.C., A simple GC–MS technique for the analysis of vapor phase mainstream cigarette smoke. J. Microcolumn Sep. 12:3 (2000), 142–152.
Miyake, T., Shibamoto, T., Quantitative analysis by gas chromatography of volatile carbonyl compounds in cigarette smoke. J. Chromatogr. A 693 (1995), 376–381.
Darrall, K.G., Figgins, J.A., Brown, R.D., Phillips, G.F., Determination of benzene and associated volatile compounds in mainstream cigarette smoke. Analyst 123 (1998), 1095–1101.
Barrefors, G., Petersson, G., Assessment of ambient volatile hydrocarbons from tobacco smoke and from vehicle emissions. J. Chromatogr. A 643 (1993), 71–76.
Charles, S.M., Batterman, S.A., Jia, C., Composition and emissions of VOCs in main- and side-stream smoke of research cigarettes. Atmos. Environ. 41 (2007), 5371–5384.
Uchiyama, S., Tomizawa, T., Inaba, Y., Kunugita, N., Simultaneous determination of volatile organic compounds and carbonyls in mainstream cigarette smoke using a sorbent cartridge followed by two-step elution. J. Chromatogr. A 1314 (2013), 31–37.
Woolfenden, E., Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air. Part 1: sorbent-based air monitoring options. J. Chromatogr. A 1217 (2010), 2674–2684.
Stefanuto, P.-H., Perrault, K., Stadler, S., Pesesse, R., Brokl, M., Forbes, S., Focant, J.-F., Reading cadaveric decomposition chemistry with a new pair of glasses. ChemPlusChem 79 (2014), 786–789.
Stadler, S., Stefanuto, P.-H., Brokl, M., Forbes, S.L., Focant, J.-F., Characterization of volatile organic compounds from human analogue decomposition using thermal desorption coupled to comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Anal. Chem. 85 (2013), 998–1005.
Forbes, S.L., Perrault, K.A., Stefanuto, P.-H., Nizio, K.D., Focant, J.-F., Comparison of the decomposition VOC profile during winter and summer in a moist, mid-latitude (Cfb) climate. PLoS One, 9, 2014.
Brokl, M., Bishop, L., Wright, C.G., Liu, C., McAdam, K., Focant, J.F., Analysis of mainstream tobacco smoke particulate phase using comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. J. Sep. Sci. 36 (2013), 1037–1044.
Dallüge, J., Vreuls, R.J.J., Beens, J., Brinkman, U.A.Th., Optimization and characterization of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC×GC-TOF MS). J. Sep. Sci. 25 (2002), 201–214.
Shellie, R., Marriott, P., Morrison, P., Comprehensive two-dimensional gas chromatography with flame ionization and time-of-flight mass spectrometry detection: qualitative and quantitative analysis of west Australian sandalwood oil. J. Chromatogr. Sci. 42 (2004), 417–422.
Cardeal, Z.L., Gomes da Silva, M.D.R., Marriott, P.J., Comprehensive two-dimensional gas chromatography/mass spectrometric analysis of pepper volatiles. Rapid Commun. Mass Spectrom. 20 (2006), 2823–2836.
Dijkmans, T., Djokic, M.R., Van Geem, K.M., Marin, G.B., Comprehensive compositional analysis of sulfur and nitrogen containing compounds in shale oil using GC×GC – FID/SCD/NCD/TOF-MS. Fuel 140 (2015), 398–406.
Nicolotti, L., Cordero, C., Bressanello, D., Cagliero, C., Liberto, E., Magagna, F., Rubiolo, P., Sgorbini, B., Bicchi, C., Parallel dual secondary column-dual detection: a further way of enhancing the informative potential of two-dimensional comprehensive gas chromatography. J. Chromatogr. A 1360 (2014), 264–274.
Bressanello, D., Liberto, E., Collino, M., Reichenbach, S.E., Benetti, E., Chiazza, F., Bicchi, C., Cordero, C., Urinary metabolic fingerprinting of mice with diet-induced metabolic derangements by parallel dual secondary column-dual detection two-dimensional comprehensive gas chromatography. J. Chromatogr. A 1361 (2014), 265–276.
Tranchida, P.Q., Salivo, S., Bonaccorsi, I., Rotondo, A., Dugo, P., Mondello, L., Analysis of the unsaponifiable fraction of lipids belonging to various milk-types by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection and with the support of high resolution time-of-flight mass. J. Chromatogr. A 1313 (2013), 194–201.
Krupčík, J., Gorovenko, R., Špánik, I., Sandra, P., Armstrong, D.W., Flow-modulated comprehensive two-dimensional gas chromatography with simultaneous flame ionization and quadrupole mass spectrometric detection. J. Chromatogr. A 1280 (2013), 104–111.
Turner, D., Morgan, G.H., White, B., A matter of taste ….flavour profiling by GCxGC-qMS / FID. Chromatogr. Today, 2012, 40–43 flavour_profiling_by_gcxgc-qmsfid/1136/. (Accessed online on 12/04/2018) http://www.chromatographytoday.com/articles/gc-mdgc-gc-ms/32/diane_turner_dr_g.h._morgan_bryan_white/a_matter_of_taste.
Duan, Y., Zheng, F., Chen, H., Huang, M., Xie, J., Chen, F., Sun, B., Analysis of volatiles in dezhou braised chicken by comprehensive two-dimensional gas chromatography/high resolution-time of flight mass spectrometry. LWT – Food Sci. Technol. 60 (2015), 1235–1242.
Byer, J.D., Siek, K., Jobst, K., Distinguishing the C3 vs SH4 mass split by comprehensive two-dimensional gas chromatography-high resolution time-of-flight mass spectrometry. Anal. Chem. 88 (2016), 6101–6104.
Yan, D.D., Wong, Y.F., Tedone, L., Shellie, R.A., Marriott, P.J., Whittock, S.P., Koutoulis, A., Chemotyping of new hop (Humulus lupulus L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass time-of-flight mass spectrometry. J. Chromatogr. A 1536 (2017), 110–121.
Gee, J., Prasad, K., Slayford, S., Gray, A., Nother, K., Cunningham, A., Mavropoulou, E., Proctor, C., Assessment of tobacco heating product THP1.0. Part 8: study to determine puffing topography, mouth level exposure and consumption among Japanese users. Regul. Toxicol. Pharmacol. 93 (2018), 84–91.
ISO, 3308, Routine Analytical Smoking Machine-Definition and Standard Conditions. 2000, International Organisation for Standardisation, Geneva.
Kind, T., Fiehn, O., Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinform. 7 (2006), 1–10.
Linear Retention Indices database onlines: https://www.ncbi.nlm.nih.gov/pccompound?cmd=search (Accessed 20 March 2018).
Ausloos, P., Clifton, C.L., Lias, S.G., Mikaya, A.I., Stein, S.E., Tchekhovskoi, D.V., Sparkman, O.D., Zaikin, V., Zhu, D., The critical evaluation of a comprehensive mass spectral library. J. Am. Soc. Mass Spectrom. 10 (1999), 287–299.
Giri, A., Coutriade, M., Racaud, A., Okuda, K., Dane, J., Cody, R.B., Focant, J.-F., Molecular characterization of volatiles and petrochemical base oils by photo-ionization GC×GC-TOF-MS. Anal. Chem. 89 (2017), 5395–5403.
Rathahao-Paris, E., Alves, S., Junot, C., Tabet, J.-C., High resolution massspectrometry for structural identification of metabolites in metabolomics. Metabolomics, 12, 2016, 10.
Dallüge, J., van Stee, L.L.P., Xu, X., Williams, J., Beens, J., Vreuls, R.J.J., Brinkman, U.A.Th., Unravelling the composition of very complex samples by comprehensive gas chromatography coupled to time-of-flight mass spectrometry. J. Chromatogr. A 974 (2002), 169–184.