[en] In this article, we discuss the effect of the polysiloxane-based poly(ionic liquid) (PIL) electrolytes viscosity on the infiltration into mesoporous and bimodal TiO2 thin films with different thickness, and consequently on the DSSC performance. The mesoporous films contain small mesopores of 8–10 nm, resulted from the use of Pluronic P123 surfactant (SOFT), resulting in high surface area. The DUAL (soft/hard) templated films have unique bimodal porous structures comprising 8–10 nm mesopores and 60–70 nm macropores resulted from the use of P123 and 130 nm polystyrene beads, which encouraged the electrolyte pore infiltration and light harvesting. Electrochemical impedance spectroscopy confirms the lower charge transfer resistance of the DUAL templated
TiO2 films as opposed to SOFT TiO2 electrodes which corresponds to higher DSSC efficiency, despite having lower dye adsorption thanks to the improved PIL electrolyte infiltration within larger pores. The addition of ionic liquids to PIL significantly lowers the viscosity, increases the ionic conductivity and I3 − diffusion rate, resulting in noticeable improvement in photovoltaic performance in both SOFT and DUAL templated photoanodes for all the observed thickness.
Disciplines :
Physical, chemical, mathematical & earth Sciences: Multidisciplinary, general & others
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Abate, A., Petrozza, A., Roiati, V., Guarnera, S., Snaith, H., Matteucci, F., Lanzani, G., Metrangolo, P., Resnati, G., A polyfluoroalkyl imidazolium ionic liquid as iodide ion source in dye sensitized solar cells. Org. Electron. 13 (2012), 2474–2478.
Adachi, M., Sakamoto, M., Jiu, J., Ogata, Y., Isoda, S., Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110 (2006), 13872–13880.
Agarwala, P., Kabra, D., A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. J. Mater. Chem. A 5 (2017), 1348–1373.
Bandara, T., Dissanayake, M., Jayasundara, W., Albinsson, I., Mellander, B.-E., Efficiency enhancement in dye sensitized solar cells using gel polymer electrolytes based on a tetrahexylammonium iodide and MgI2 binary iodide system. Phys. Chem. Chem. Phys. 14 (2012), 8620–8627.
Bharwal, A.K., Nguyen, N.A., Iojoiu, C., Henrist, C., Alloin, F., New polysiloxane bearing imidazolium iodide side chain as electrolyte for photoelectrochemical cell. Solid State Ion. 307 (2017), 6–13.
Bräutigam, M., Weyell, P., Rudolph, T., Dellith, J., Krieck, S., Schmalz, H., Schacher, F.H., Dietzek, B., Porous NiO x nanostructures templated by polystyrene-block-poly (2-vinylpyridine) diblock copolymer micelles. J. Mater. Chem. A 2 (2014), 6158–6166.
Cahen, D., Hodes, G., Grätzel, M., Guillemoles, J.F., Riess, I., Nature of photovoltaic action in dye-sensitized solar cells. J. Phys. Chem. B 104 (2000), 2053–2059.
Cipolla, M.P., De Gregorio, G.L., Grisorio, R., Giannuzzi, R., Gigli, G., Suranna, G.P., Manca, M., An ion conductive polysiloxane as effective gel electrolyte for long stable dye solar cells. J. Power Sources 356 (2017), 191–199.
de Freitas, J.N., de Souza Gonçalves, A., De Paoli, M.-A., Durrant, J.R., Nogueira, A.F., The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochim. Acta 53 (2008), 7166–7172.
de Freitas, J.N., Nogueira, A.F., De Paoli, M.-A., New insights into dye-sensitized solar cells with polymer electrolytes. J. Mater. Chem. 19 (2009), 5279–5294.
De Gregorio, G.L., Agosta, R., Giannuzzi, R., Martina, F., De Marco, L., Manca, M., Gigli, G., Highly stable gel electrolytes for dye solar cells based on chemically engineered polymethacrylic hosts. Chem. Commun. 48 (2012), 3109–3111.
De Gregorio, G.L., Giannuzzi, R., Cipolla, M.P., Agosta, R., Grisorio, R., Capodilupo, A., Suranna, G.P., Gigli, G., Manca, M., Iodopropyl-branched polysiloxane gel electrolytes with improved ionic conductivity upon cross-linking. Chem. Commun. 50 (2014), 13904–13906.
Dewalque, J., Cloots, R., Mathis, F., Dubreuil, O., Krins, N., Henrist, C., TiO2 multilayer thick films (up to 4 μm) with ordered mesoporosity: influence of template on the film mesostructure and use as high efficiency photoelectrode in DSSCs. J. Mater. Chem. 21 (2011), 7356–7363.
Dong, Z., Zhang, Q., Yu, C., Peng, J., Ma, J., Ju, X., Zhai, M., Effect of ionic liquid on the properties of poly(vinylidene fluoride)-based gel polymer electrolytes. Ionics 19 (2013), 1587–1593, 10.1007/s11581-013-0905-2.
Góes, M.S., Joanni, E., Muniz, E.C., Savu, R., Habeck, T.R., Bueno, P.R., Fabregat-Santiago, F., Impedance spectroscopy analysis of the effect of TiO2 blocking layers on the efficiency of dye sensitized solar cells. J. Phys. Chem. C 116 (2012), 12415–12421.
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H., Dye-sensitized solar cells. Chem. Rev. 110 (2010), 6595–6663.
Han, S.-H., Lee, S., Shin, H., Suk Jung, H., A quasi-inverse opal layer based on highly crystalline TiO2 nanoparticles: a new light-scattering layer in dye-sensitized solar cells. Adv. Energy Mater. 1 (2011), 546–550.
Henrist, C., Dewalque, J., Cloots, R., Vertruyen, B., Jonlet, J., Colson, P., Hierarchical porous TiO2 thin films by soft and dual templating: a quantitative approach of specific surface and porosity. Thin Solid Films 539 (2013), 188–193.
Hore, S., Nitz, P., Vetter, C., Prahl, C., Niggemann, M., Kern, R., Scattering spherical voids in nanocrystalline TiO2–enhancement of efficiency in dye-sensitized solar cells. Chem. Commun., 2005, 2011–2013.
Kang, M.-S., Kim, J.H., Won, J., Kang, Y.S., Oligomer approaches for solid-state dye-sensitized solar cells employing polymer electrolytes. J. Phys. Chem. C 111 (2007), 5222–5228.
Kavan, L., Zukalová M., Kalbáč M., Graetzel, M., Lithium insertion into anatase inverse opal. J. Electrochem. Soc. 151 (2004), A1301–A1307.
Khanmirzaei, M.H., Ramesh, S., Ramesh, K., Polymer electrolyte based dye-sensitized solar cell with rice starch and 1-methyl-3-propylimidazolium iodide ionic liquid. Mater. Des. 85 (2015), 833–837.
Khanmirzaei, M.H., Ramesh, S., Ramesh, K., Hydroxypropyl cellulose based non-volatile gel polymer electrolytes for dye-sensitized solar cell applications using 1-methyl-3-propylimidazolium iodide ionic liquid. Sci. Rep., 5, 2015, 18056, 10.1038/srep18056.
Kim, J.K., Lee, C.S., Lee, S.-Y., Cho, H.H., Kim, J.H., Bimodal porous TiO2 structures templated by graft copolymer/homopolymer blend for dye-sensitized solar cells with polymer electrolyte. J. Power Sources 336 (2016), 286–297.
Kim, W., Choi, S.Y., Jeon, Y.M., Lee, S., Kim, S.H., Highly ordered, hierarchically porous TiO2 films via combination of two self-assembling templates. ACS Appl. Mater. Interfaces 6 (2014), 11484–11492.
Kim, Y., Sung, Y.-E., Xia, J.-B., Lira-Cantu, M., Masaki, N., Yanagida, S., Solid-state dye-sensitized TiO2 solar cells using poly (3, 4-ethylenedioxythiophene) as substitutes of iodine/iodide electrolytes and noble metal catalysts on FTO counter electrodes. J. Photochem. Photobiol. Chem. 193 (2008), 77–80.
Ko, Y.H., Raju, G.S.R., Kim, S., Yu, J.S., Diffuse light-scattering properties of nanocracked and porous MoO3 films self-formed by electrodeposition and thermal annealing. Phys. Status Solidi A 209 (2012), 2161–2166.
Le, M.L.P., Alloin, F., Strobel, P., Leprêtre, J.-C., Pérez del Valle, C., Judeinstein, P., Structure- properties relationships of lithium electrolytes based on ionic liquid. J. Phys. Chem. B 114 (2009), 894–903.
Lee, J.S., Kim, K.H., Kim, C.S., Choi, H.W., Achieving enhanced dye-sensitized solar cell performance by TiCl4/Al2O3 doped TiO2 nanotube array photoelectrodes. J. Nanomater., 2015, 2015, 4.
Lee, Soonho, Jeon, Y., Lim, Y., Hossain, M.A., Lee, Sangyoung, Cho, Y., Ju, H., Kim, W., A new siloxane containing imidazolium iodide as electrolyte for dye-sensitized solar cell. Electrochim. Acta 107 (2013), 675–680.
Leng, W.H., Zhang, Z., Zhang, J.Q., Cao, C.N., Investigation of the kinetics of a TiO2 photoelectrocatalytic reaction involving charge transfer and recombination through surface states by electrochemical impedance spectroscopy. J. Phys. Chem. B 109 (2005), 15008–15023.
Li, H., Vienneau, G., Jones, M., Subramanian, B., Robichaud, J., Djaoued, Y., Crack-free 2D-inverse opal anatase TiO2 films on rigid and flexible transparent conducting substrates: low temperature large area fabrication and electrochromic properties. J. Mater. Chem. C 2 (2014), 7804–7810.
Li, T., Schulte, L., Hansen, O., Ndoni, S., Nanoporous gyroid TiO2 and SnO2 by melt infiltration of block copolymer templates. Microp. Mesop. Mater. 210 (2015), 161–168.
Liu, H., Cheng, S., Wu, M., Wu, H., Zhang, J., Li, W., Cao, C., Photoelectrocatalytic degradation of sulfosalicylic acid and its electrochemical impedance spectroscopy investigation. J. Phys. Chem. A 104 (2000), 7016–7020.
Longo, C., Nogueira, A.F., De Paoli, M.-A., Cachet, H., Solid-state and flexible dye-sensitized TiO2 solar cells: a study by electrochemical impedance spectroscopy. J. Phys. Chem. B 106 (2002), 5925–5930.
Mathew, S., Yella, A., Gao, P., Humphry-Baker, R., Curchod, B.F.E., Ashari-Astani, N., Tavernelli, I., Rothlisberger, U., Nazeeruddin, M.K., Grätzel, M., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 6 (2014), 242–247.
Nazeeruddin, M.K., De Angelis, F., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B., Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 127 (2005), 16835–16847, 10.1021/ja052467l.
Ng, H.M., Ramesh, S., Ramesh, K., Efficiency improvement by incorporating 1-methyl-3-propylimidazolium iodide ionic liquid in gel polymer electrolytes for dye-sensitized solar cells. Electrochim. Acta 175 (2015), 169–175.
Nogueira, A.F., Longo, C., De Paoli, M.-A., Polymers in dye sensitized solar cells: overview and perspectives. Coord. Chem. Rev. 248 (2004), 1455–1468.
O'Regan, B., Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991), 737–740.
O'Regan, B., Lenzmann, F., Muis, R., Wienke, J., A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem. Mater. 14 (2002), 5023–5029.
Qi, L., Birnie, D.P., Templated titania films with meso-and macroporosities. Mater. Lett. 61 (2007), 2191–2194.
Quan, L.N., Jang, Y.H., Jang, Y.J., Kim, J., Lee, W., Moon, J.H., Kim, D.H., Mesoporous carbon-TiO2 beads with nanotextured surfaces as photoanodes in dye-sensitized solar cells. ChemSusChem 7 (2014), 2590–2596.
Rapsomanikis, A., Karageorgopoulos, D., Lianos, P., Stathatos, E., High performance perovskite solar cells with functional highly porous TiO2 thin films constructed in ambient air. Sol. Energy Mater. Sol. Cells 151 (2016), 36–43.
Ren, Y., Zhang, Z., Gao, E., Fang, S., Cai, S., A dye-sensitized nanoporous TiO2 photoelectrochemical cell with novel gel network polymer electrolyte. J. Appl. Electrochem. 31 (2001), 445–447.
Sallard, S., Schröder, M., Boissière, C., Dunkel, C., Etienne, M., Walcarius, A., Oekermann, T., Wark, M., Smarsly, B.M., Bimodal mesoporous titanium dioxide anatase films templated by a block polymer and an ionic liquid: influence of the porosity on the permeability. Nanoscale, 5, 2013, 12316, 10.1039/c3nr02732e.
Steigerwald, M.L., Alivisatos, A.P., Gibson, J.M., Harris, T.D., Kortan, R., Muller, A.J., Thayer, A.M., Duncan, T.M., Douglass, D.C., Brus, L.E., Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 110 (1988), 3046–3050.
Zhang, Q., Myers, D., Lan, J., Jenekhe, S.A., Cao, G., Applications of light scattering in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 14 (2012), 14982–14998.
Zukalova, M., Zukal, A., Kavan, L., Nazeeruddin, M.K., Liska, P., Grätzel, M., Organized mesoporous TiO2 films exhibiting greatly enhanced performance in dye-sensitized solar cells. Nano Lett. 5 (2005), 1789–1792.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.