Alley, R.B., Clark, P.U., Keigwin, L.D., and Webb, R.S., 1999, Making sense of millennial-scale climate change, in Clark, P.U., et al., eds., Mechanisms of Global Climate Change at Millennial Time Scales: American Geophysical Union Geophysical Monograph 112, p. 385-394.
Berger, A., Loutre, M.F., and Laskar, J., 1992, Stability of the astronomical frequencies over the Earth's history for paleoclimate studies: Science, v. 255, p. 560-566, https://doi .org/10 .1126/science .255 .5044 .560
Berger, A., Loutre, M.F., and Mélice, J.L., 2006, Equatorial insolation: From precession harmonics to eccentricity frequencies: Climate of the Past, v. 2, p. 131-136, https://doi .org/10 .5194/cp-2-131-2006
Braun, H., Christl, M., Rahmstorf, S., Ganopolski, A., Mangini, A., Kubatzki, C., Roth, K., and Kromer, B., 2005, Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model: Nature, v. 438, p. 208-211, https://doi .org/10 .1038/nature04121
Chlupác, I., 2000, Cyclicity and duration of Lower Devonian stages: Observations from the Barrandian area, Czech Republic: Neues Jahrbuch für Geologie und Paläontologie, v. 215, p. 97-124, https://doi .org/10 .1127/njgpa/215/2000/97
Damon, P.E., and Jirikowic, J.L., 1992, The sun as a low-frequency harmonic oscillator: Radiocarbon, v. 34, p. 199-205, https://doi .org/10 .1017/S003382220001362X
Dansgaard, W., White, J.W.C., and Johnsen, S.J., 1989, The abrupt termination of the Younger Dryas climate event: Nature, v. 339, p. 532-534, https://doi .org/10 .1038/339532a0
Da Silva, A., Hladil, J., Chadimová, L., Slavík, L., Hilgen, F.J., Bábek, O., and Dekkers, M.J., 2016, Refining the Early Devonian time scale using Milankovitch cyclicity in Lochkovian-Pragian sediments (Prague Synform, Czech Republic): Earth and Planetary Science Letters, v. 455, p. 125-139, https://doi .org/10 .1016/j .epsl .2016 .09 .009
de Winter, N.J., Zeeden, C., and Hilgen, F.J., 2014, Low-latitude climate variability in the Heinrich frequency band of the Late Cretaceous greenhouse world: Climate of the Past, v. 10, p. 1001-1015, https://doi .org/10 .5194/cp-10-1001-2014
Draut, A.E., Raymo, M.E., McManus, J.F., and Oppo, D.W., 2003, Climate stability during the Pliocene warm period: Paleoceanography, v. 18, 1078, https://doi .org/10 .1029/2003PA000889
Du, M., 2013, Comparing nonlinear climate responses to orbital-insolation during the early Miocene and Pleistocene: A bicoherence study [M.S. thesis]: Madison, The University of Wisconsin, 55 p
Elrick, M., and Hinnov, L.A., 2007, Millennial-scale paleoclimate cycles recorded in widespread Paleozoic deeper water rhythmites of North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 243, p. 348-372, https://doi .org/10 .1016/j .palaeo .2006 .08 .008
Franco, D.R., Hinnov, L.A., and Ernesto, M., 2012, Millennial-scale climate cycles in Permian-Carboniferous rhythmites: Permanent feature throughout geologic time?: Geology, v. 40, p. 19-22, https://doi .org/10 .1130/G32338 .1
Hagelberg, T., Pisias, N., and Elgar, S., 1991, Linear and nonlinear couplings between orbital forcing and the marine d18O record during the Late Neogene: Paleoceanography, v. 6, p. 729-746, https://doi .org/10 .1029/91PA02281
Heinrich, H., 1988, Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years: Quaternary Research, v. 29, p. 142-152, https://doi .org/10 .1016/0033-5894 (88)90057-9
Hladil, J., Cejchan, P., Bábek, O., Koptíková, L., Navratil, T., and Kubinova, P., 2010, Dust-A geology-orientated attempt to reappraise the natural components, amounts, inputs to sediment, and importance for correlation purposes: Geologica Belgica, v. 13, p. 367-384
Joachimski, M.M., Breisig, S., Buggisch, W., Talent, J.A., Mawson, R., Gereke, M., Morrow, J.R., Day, J., and Weddige, K., 2009, Devonian climate and reef evolution: Insights from oxygen isotopes in apatite: Earth and Planetary Science Letters, v. 284, p. 599-609, https://doi .org/10 .1016/j .epsl .2009 .05 .028
Kern, A.K., Harzhauser, M., Soliman, A., Piller, W.E., and Mandic, O., 2013, Highresolution analysis of upper Miocene lake deposits: Evidence for the influence of Gleissberg-band solar forcing: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 370, p. 167-183, https://doi .org/10 .1016/j .palaeo .2012 .12 .005
Kloosterboer-van Hoeve, M.L., Steenbrink, J., Visscher, H., and Brinkhuis, H., 2006, Millennial-scale climatic cycles in the Early Pliocene pollen record of Ptolemais, northern Greece: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 229, p. 321-334, https://doi .org/10 .1016/j .palaeo .2005 .07 .002
Lenz, O.K., Wilde, V., and Riegel, W., 2017, ENSO-and solar-driven sub-Milankovitch cyclicity in the Palaeogene greenhouse world: High-resolution pollen records from Eocene Lake Messel, Germany: Journal of the Geological Society, v. 174, p. 110-128, https://doi .org/10 .1144/jgs2016-046
MacAyeal, D.R., 1993, Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic's Heinrich events: Paleoceanography, v. 8, p. 775-784, https://doi .org/10 .1029/93PA02200
MacLean, W.H., Bonavia, F.F., and Sanna, G., 1997, Argillite debris converted to bauxite during karst weathering: Evidence from immobile element geochemistry at the Olmedo Deposit, Sardinia: Mineralium Deposita, v. 32, p. 607-616, https://doi .org/10 .1007/s001260050126
McManus, J.F., Oppo, D.W., and Cullen, J.L., 1999, A 0.5-million-year record of millennial-scale climate variability in the North Atlantic: Science, v. 283, p. 971-975, https://doi .org/10 .1126/science .283 .5404 .971
Meyers, S.R., 2014, astrochron: An R package for astrochronology, Version 7.0: http://cran .r-project .org/package=astrochron
Nederbragt, A.J., and Thurow, J., 2005, Geographic coherence of millennial-scale climate cycles during the Holocene: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 221, p. 313-324, https://d oi. org/10. 1016/j. palaeo. 2005. 03. 002
Scafetta, N., Milani, F., Bianchini, A., and Ortolani, S., 2016, On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene: Earth-Science Reviews, v. 162, p. 24-43, https://doi .org/10 .1016/j .earscirev .2016 .09 .004
Slavík, L., Valenzuela-Ríos, J.I., Hladil, J., Chadimová, L., Liao, J.-C., Hušková, A., Calvo, H., and Hrstka, T., 2016, Warming or cooling in the Pragian? Sedimentary record and petrophysical logs across the Lochkovian-Pragian boundary in the Spanish Central Pyrenees: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 449, p. 300-320, https://doi .org/10 .1016/j .palaeo .2016 .02 .018
Thomson, D.J., 1982, Spectrum estimation and harmonic analysis: Proceedings of the IEEE, v. 70, p. 1055-1096, https://doi .org/10 .1109/PROC .1982 .12433
Torrence, C., and Compo, G.P., 1998, A practical guide to wavelet analysis: Bulletin of the American Meteorological Society, v. 79, p. 61-78, https://doi .org/10 .1175/1520-0477 (1998)079 <0061: APGTWA>2 .0 .CO;2
von Dobeneck, T., and Schmieder, F., 1999, Using rock magnetic proxy records for orbital tuning and extended time series analyses into the super-and sub-Milankovitch bands, in Fischer, G., and Wefer, G., eds., Use of Proxies in Paleoceanography: Examples from the South Atlantic: Berlin Heidelberg, Springer-Verlag, p. 601-633, https://doi .org/10 .1007/978-3-642-58646-0_25
Wara, M.W., Ravelo, A.C., and Revenaugh, J.S., 2000, The pacemaker always rings twice: Paleoceanography, v. 15, p. 616-624, https://doi .org/10 .1029/2000PA000500