[en] We report on a technique for accurately π/2-phase shifting a stabilized interference pattern of light fringes used for building up a map of phase for 2D deformation measurement. This technique is based on the use of low amplitude phase modulation on the setup in order to generate first and second harmonics temporal terms in the pattern of light to operate an actively stabilized setup. Particular features of this stabilization setup allow one to use them for accurate π/2-phase shifting with the practical advantage of operating on an already stabilized pattern of fringes.
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Physics
Author, co-author :
de Oliveira, Ivan; Universidade Estadual de Campinas > GOMNI
Borges Bertasso, Flavio; Universidade Estadual de Campinas > GOMNI
Georges, Marc ; Université de Liège - ULiège > CSL (Centre Spatial de Liège)
Frejlich, Jaime; Universidade Estadual de Campinas > Instituto de Fisica Gleb Wataghin
Language :
English
Title :
Accurate π/2-phase shifting setup for a stabilized interference pattern of light fringes
Publication date :
February 2019
Journal title :
Optik - International Journal for Light and Electron Optics
Sirohi, R.S., Optical Methods of Measurement: Wholefield Techniques. 2nd ed., 2009, CRC Press, Boca Raton, London, New York.
Malacara, D., Optical Shop Testing. 3rd ed., 2007, John Wiley & Sons, Inc., Hoboken, New Jersey.
Kreis, T., Handbook of Holographic Interferometry: Optical and Digital Methods. 2005, Wiley-VCH verlag GmbH & Co KGaA, Weinheim.
Lemaire, P., Georges, M., Dynamic holographic interferometry: devices and applications. Günter, P., Huignard, J.-P., (eds.) Photorefractive Materials and their Applications 3, vol. 115 of Springer Series in Optical Sciences, 2007.
Frejlich, J., Garcia, P., Advances in real-time holographic interferometry for the measurement of vibrations and deformations. Opt. Laser Eng. 32 (1999), 515–527.
Pouet, B., Krishnaswamy, S., Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements. Appl. Opt. 35 (1996), 787–794.
Alexeenko, I., Vandenrijt, J.-F., Pedrini, G., Thizy, C., Vollheim, B., Osten, W., Georges, M.P., Nondestructive testing by using long-wave infrared interferometric techniques with CO2 lasers and microbolometer arrays. Appl. Opt. 52 (2013), A56–A57.
Vandenrijt, J.-F., Thizy, C., Queeckers, P., Dubois, F., Doyle, D., Georges, M., Long-wave infrared digital holographic interferometry with diffuser or point source illuminations for measuring deformations of aspheric mirrors. Opt. Eng., 53, 2014, 112309.
Georges, M., Long-wave infrared digital holography. Picart, P., (eds.) New Techniques in Digital Holography, 2015, John Wiley & Sons, Inc., Hoboken.
Ambite, E.J., Arizmendi, L., Feedback-controlled recording and fixing of photorefractive holograms in reflection geometry on lithium niobate crystals. J. Opt. Soc. Am. B 28 (2011), 1161–1167.
Avila, L.F., Freschi, A.A., Cescato, L., Holographic technique for measurement of the kinetic constant and optical modulation of photosensitive materials. Appl. Opt. 49 (2010), 3499–3505.
Frejlich, J., de Oliveira, I., Arizmendi, L., Carrascosa, M., Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation. Appl. Opt. 46 (2007), 227–233.
Sio, L.D., Caputo, R., Luca, A.D., Veltri, A., Umeton, C., Sukhov, A.V., In situ optical control and stabilization of the curing process of holographic gratings with a nematic film polymer-slice sequence structure. Appl. Opt. 45 (2006), 3721–3727.
Thizy, C., Georges, M., Lemaire, P., Stockman, Y., Doyle, D., Phase control strategies for stabilization of photorefractive holographic interferometer. Proc. SPIE, 6341, 2006 63411O–63411O–6.
Sturman, B., Podivilov, E., Gorkunov, M., Regimes of feedback-controlled beam coupling. Phys. Rev. E, 72, 2005 016621–1 016621–11.
de Oliveira, I., Frejlich, J., Arizmendi, L., Carrascosa, M., Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals. Opt. Commun. 229 (2004), 371–380.
Gorkunov, M., Sturman, B., Luennemann, M., Buse, K., Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields. Appl. Phys. B 77 (2003), 43–48.
Dai, X., Yun, H., Shao, X., Wang, Y., Zhang, D., Yang, F., He, X., Thermal residual stress evaluation based on phase-shift lateral shearing interferometry. Opt. Laser Eng. 105 (2018), 182–187.