Fernández-Martínez, M.; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain, CREAF, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain
Vicca, S.; Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
Janssens, I. A.; Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, Wilrijk, Belgium
Ciais, P.; Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
Obersteiner, M.; International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg, Austria
Bartrons, M.; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain, CREAF, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain
Sardans, J.; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain, CREAF, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain
Verger, A.; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain, CREAF, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain
Canadell, J. G.; Global Carbon Project, CSIRO Oceans and Atmosphere, Canberra, Australia
Chevallier, F.; Laboratoire des Sciences du Climat et de l'Environnement, CEA CNRS UVSQ, Gif-sur-Yvette, France
Wang, X.; Sino-French Institute of Earth System Sciences, College of Urban and Environmental Sciences, Peking University, Beijing, China, Laboratoire de Météorologie Dynamique, Université Pierre et Marie Curie, Paris, France
Bernhofer, C.; TU Dresden, Institut für Hydrologie und Meteorologie, LS Meteorologie, Pienner Str. 23, Tharandt, Germany
Curtis, P. S.; Department of Evolution,Ecology, and Organismal Biology, Ohio State University, Columbus, Ohio, United States
Gianelle, D.; Foxlab Joint CNR-FEM Initiative, Via E. Mach 1, San Michele all'Adige, Italy, Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Center, Fondazione Edmund Mach, S Michele all' Adige Trento, Italy
Grünwald, T.; TU Dresden, Institut für Hydrologie und Meteorologie, LS Meteorologie, Pienner Str. 23, Tharandt, Germany
Heinesch, Bernard ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Ibrom, A.; Department of Environmental Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
Knohl, A.; Bioclimatology, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, Göttingen, Germany
Laurila, T.; Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland
Law, B. E.; Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, United States
Limousin, J. M.; Centre d'Ecologie Fonctionelle et Evolutive CEFE,UMR 5175, CNRS, Université de Montpellier, Université Paul-Valery Montpellier, EPHE, 1919 route de Mende, Montpellier 5, France
Longdoz, Bernard ; Université de Liège - ULiège > Ingénierie des biosystèmes (Biose) > Biosystems Dynamics and Exchanges
Loustau, D.; INRA, UMR 1391 ISPA, Centre de Bordeaux Aquitaine, Villenave-d'Ornon, France
Mammarella, I.; Department of Physics, University of Helsinki, P.O. Box 48, Helsinki, Finland
Matteucci, G.; IBAF-National Research Council of Italy, Monterotondo (RM), Italy, ISAFOM-National Research Council of Italy, Rende (CS), Italy
Monson, R. K.; School of Natural Resources and the Environment, Laboratory of Tree Ring Research, University of Arizona, Tucson, Arizona, United States
Montagnani, L.; Forest Services, Autonomous Province of Bolzano, Via Brennero 6, Bolzano, Italy, Faculty of Science and Technology, Free University of Bolzano, Piazza Università 5, Bolzano, Italy
Moors, E. J.; Alterra Wageningen UR, PO Box 47, Wageningen, Netherlands, VU University Amsterdam, Boelelaan, Amsterdam, Netherlands
Munger, J. W.; School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States
Papale, D.; DIBAF, University of Tuscia, Viterbo, Italy
Piao, S. L.; Sino-French Institute of Earth System Sciences, College of Urban and Environmental Sciences, Peking University, Beijing, China, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
Peñuelas, J.; CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain, CREAF, Cerdanyola Del Vallès, Barcelona, Catalonia, Spain
Atmospheric deposition, CO2, and change in the land carbon sink
Publication date :
2017
Journal title :
Scientific Reports
eISSN :
2045-2322
Publisher :
Nature Publishing Group
Volume :
7
Issue :
1
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
European Research Council Synergy grant ERC-2013-SyG 610028-IMBALANCE-P; Spanish Government grant CGL2013–48074-P; Catalan Government project SGR 2014–274; Catalan Government project SGR 2014–274FI-2013; GHG-Europe project; Australian Climate Change Science Programme
Funders :
ERC - European Research Council Spanish Government Catalan Government FWO - Fonds Wetenschappelijk Onderzoek Vlaanderen Spanish Ministry of Science and Innovation
Le Quéré, C. et al. Global Carbon Budget 2015. Earth Syst. Sci. Data 7, 349-396 (2015).
Alexander, L. et al. Climate Change 2013: The Physical Science Basis - Summary for Policymakers. Fifth Assessment Report. At: http://www.climatechange2013.org/. (Intergovernmental Panel on Climate Change, 2013).
Peñuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).
Ciais, P. et al. 2013: Carbon and Other Biogeochemical Cycles. Clim. Chang. 2013 Phys. Sci. Basis. Contrib. Work. Gr. I to Fifth Assess. Rep. Intergov. Panel Clim. Chang. 465-570 (2013). doi:10.1017/CBO9781107415324.015
Linderholm, H. W. Growing season changes in the last century. Agric. For. Meteorol. 137, 1-14 (2006).
Fernández-Martínez, M. et al. Nutrient availability as the key regulator of global forest carbon balance. Nat. Clim. Chang. 4, 471-476 (2014).
Büntgen, U. et al. Placing unprecedented recent fir growth in a European-wide and Holocene-long context. Front. Ecol. Environ. 12, 100-106 (2013).
Pan, Y. et al. A large and persistent carbon sink in the world's forests. Science 333, 988-93 (2011).
Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351-71 (2005).
Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597-608 (2011).
Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324-327 (2013).
van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24-28 (2014).
Magnani, F. NEP and Nitrogen deposition. Nature 1-3, doi: 10.1038/nature05847 (2002).
de Vries, W., Du, E. & Butterbach-Bahl, K. Short and long-term impacts of nitrogen deposition on carbon sequestration by forest ecosystems. Curr. Opin. Environ. Sustain. 9-10, 90-104 (2014).
Fernández-Martínez, M. et al. Spatial variability and controls over biomass stocks, carbon fluxes and resource-use efficiencies in forest ecosystems. Trees, Struct. Funct. 28, 597-611 (2014).
Fleischer, K. et al. The contribution of nitrogen deposition to the photosynthetic capacity of forests. Global Biogeochem. Cycles 27, 187-199 (2013).
Likens, G. E., Driscoll, C. T. & Buso, D. C. Long-Term Effects of Acid Rain: Response and Recovery of a Forest Ecosystem. Science 272, 244-246 (1996).
Thomas, R. B., Spal, S. E., Smith, K. R. & Nippert, J. B. Evidence of recovery of Juniperus virginiana trees from sulfur pollution after the Clean Air Act. Proc. Natl. Acad. Sci. USA 110, 15319-24 (2013).
Oulehle, F. et al. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Glob. Chang. Biol. 17, 3115-3129 (2011).
Menz, F. C. & Seip, H. M. Acid rain in Europe and the United States: an update. Environ. Sci. Policy 7, 253-265 (2004).
Lajtha, K. & Jones, J. Trends in cation, nitrogen, sulfate and hydrogen ion concentrations in precipitation in the United States and Europe from 1978 to 2010: a new look at an old problem. Biogeochemistry 116, 303-334 (2013).
De Vries, W. et al. The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For. Ecol. Manage. 258, 1814-1823 (2009).
Zhu, Z. et al. Global Data Sets of Vegetation Leaf Area Index (LAI)3g and Fraction of Photosynthetically Active Radiation (FPAR)3g Derived from Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI3g) for the Period 1981 to 2. Remote Sens. 5, 927-948 (2013).
European Monitoring and Evaluation Programme. EMEP MSC-W modelled air concentrations and depositions. EMEP MSC-W modelled air concentrations and depositions. At: http://www.emep.int/mscw/index-mscw.html (2013).
National Atmospheric Deposition Program. Annual NTN Maps by Year. National Atmospheric Deposition Program (NRSP-3). At: http://nadp.sws.uiuc.edu/ntn/annualmapsByYear.aspx (2013).
Harris, I., Jones, P. D. D., Osborn, T. J. J. & Lister, D. H. H. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. Int. J. Climatol. 34, online, update (2013).
Vicente-serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 23, 1696-1718 (2010).
Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 104, 18866-70 (2007).
Sitch, S. et al. Trends and drivers of regional sources and sinks of carbon dioxide over the past two decades. Biogeosciences 12, 653-679 (2015).
Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl. Acad. Sci. USA 107, 19368-73 (2010).
Smith, K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Chang. 6, 306-310 (2015).
Körner, C. Biosphere responses to CO2 enrichment. Ecol. Appl. 10, 1590-1619 (2000).
Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA 102, 18052-18056 (2005).
Aber, J. et al. Forest Processes and Global Environmental Change: Predicting the Effects of Individual and Multiple Stressors. Bioscience 51, 735 (2001).
Prentice, I. C., Heimann, M. & Sitch, S. The carbon balance of the terrestrial biosphere: Ecosystem models and Atmospheric observations. Ecol. Appl. 10, 1553-1573 (2000).
Sardans, J., Rivas-Ubach, A. & Peñuelas, J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 14, 33-47 (2012).
Hu, S., Chapin, F. S., Firestone, M. K., Field, C. B. & Chiariello, N. R. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409, 188-91 (2001).
Norby, R. J., Cotrufo, M. F., Ineson, P., O'Neill, E. G. & Canadell, J. G. Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127, 153-65 (2001).
Bengtson, P., Barker, J. & Grayston, S. J. Evidence of a strong coupling between root exudation, C and N availability, and stimulated SOM decomposition caused by rhizosphere priming effects. Ecol. Evol. 2, 1843-52 (2012).
Andersson, S. & Nilsson, S. I. Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol. Biochem. 33, 1181-1191 (2001).
Truog, E. Soil Reaction Influence on Availability of Plant Nutrients1. Soil Sci. Soc. Am. J. 11, 305 (1946).
Gundersen, P. & Rasmussen, L. in Reviews of Environmental Contamination and Toxicology (Springer, 1990). doi:10.1177/0192513X12437708
Vicca, S. et al. Fertile forests produce biomass more efficiently. Ecol. Lett. 15, 520-6 (2012).
Janssens, Ia. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315-322 (2010).
De Vries, W., Hettelingh, J.-P. & Posch, M. Critical Loads and Dynamic Risk Assessments: Nitrogen, Acidity and Metals in Terrestrial and Aquatic Ecosystems, Environmental Pollution Volume 25. (Springer, 2015).
Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014-1017 (2009).
Ibrom, A. et al. A comparative analysis of simulated and observed photosynthetic CO2 uptake in two coniferous forest canopies. Tree Physiol. 26, 845-864 (2006).
Piao, S. et al. Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology 91, 652-661 (2010).
Olsson, P., Linder, S., Giesler, R. & Högberg, P. Fertilization of boreal forest reduces both autotrophic and heterotrophic soil respiration. Glob. Chang. Biol. 11, 1745-1753 (2005).
Luyssaert, S. et al. The European carbon balance. Part 3: forests. Glob. Chang. Biol. 16, 1429-1450 (2010).
Field, C., Merino, J. & Mooney, Ha. Compromises between water-use efficiency and nitrogen-use efficiency in five species of California evergreens. Oecologia 60, 384-389 (1983).
Wang, L. et al. Interactions between leaf nitrogen status and longevity in relation to N cycling in three contrasting European forest canopies. Biogeosciences 10, 999-1011 (2013).
Lefroy, R. D. B., Santoso, D. & Blair, G. J. Fate of applied phosphate and sulfate in weathered acid soils under leaching conditions. Aust. J. Soil Res. 33, 135-151 (1995).
Kuribayashi, M. et al. Long-term trends of sulfur deposition in East Asia during 1981-2005. Atmos. Environ. 59, 461-475 (2012).
Galloway, J. N. et al. Nitrogen Cycles: Past, Present, and Future. Biogeochemistry 70, 153-226 (2004).
Fernández-Martínez, M., Vicca, S., Janssens, I. A., Campioli, M. & Peñuelas, J. Nutrient availability and climate as the main determinants of the ratio of biomass to NPP in woody and non-woody forest compartments. Trees, Struct. Funct. 30, 775-783 (2016).
Nachtergaele, F. & Velthuizen, H. Van. Harmonized World Soil Database.... World Congr. Soil... 38. At: http://www.fao.org/uploads/media/Harm-World-Soil-DBv7cv-1.pdf (2010).
Lukasz Komsta. mblm: Median-Based Linear Models. At: http://cran.r-project.org/package=mblm (2012).
Ohlson, J. A. & Kim, S. Linear valuation without OLS: the Theil-Sen estimation approach. Review of Accounting Studies 20, (2015).
Stokland, J. N. et al. Forest biodiversity indicators in the Nordic Countries. Status based on national forest inventories. Tema Nord 2003, 514 (2003).
Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1-27 (2006).
Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. (Springer, 2004).
Ku, H. H. Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. Sect. C Eng. Instrum. 70C, 263-273 (1966).