[en] Context: The observed clumpy structures in debris disks are commonly interpreted as particles trapped in mean-motion resonances with an unseen exo-planet. Populating the resonances requires a migrating process of either the particles (spiraling inward due to drag forces) or the planet (moving outward). Because the drag time-scale in resolved debris disks is generally long compared to the collisional time-scale, the planet migration scenario might be more likely, but this model has so far only been investigated for planets on circular orbits. Aims: We present a thorough study of the impact of a migrating planet on a planetesimal disk, by exploring a broad range of masses and eccentricities for the planet. We discuss the sensitivity of the structures generated in debris disks to the basic planet parameters. Methods: We perform many N-body numerical simulations, using the symplectic integrator SWIFT, taking into account the gravitational influence of the star and the planet on massless test particles. A constant migration rate is assumed for the planet. Results: The effect of planetary migration on the trapping of particles in mean motion resonances is found to be very sensitive to the initial eccentricity of the planet and of the planetesimals. A planetary eccentricity as low as 0.05 is enough to smear out all the resonant structures, except for the most massive planets. The planetesimals also initially have to be on orbits with a mean eccentricity of less than than 0.1 in order to keep the resonant clumps visible. Conclusions: This numerical work extends previous analytical studies and provides a collection of disk images that may help in interpreting the observations of structures in debris disks. Overall, it shows that stringent conditions must be fulfilled to obtain observable resonant structures in debris disks. Theoretical models of the origin of planetary migration will therefore have to explain how planetary systems remain in a suitable configuration to reproduce the observed structures.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Reche, R.; Laboratoire d'Astrophysique de Grenoble, CNRS, Université Joseph-Fourier, UMR 5571, Domaine Universitaire, 38400 Saint-Martin d'Hères, France
Beust, H.; Laboratoire d'Astrophysique de Grenoble, CNRS, Université Joseph-Fourier, UMR 5571, Domaine Universitaire, 38400 Saint-Martin d'Hères, France
Augereau, J.-C.; Laboratoire d'Astrophysique de Grenoble, CNRS, Université Joseph-Fourier, UMR 5571, Domaine Universitaire, 38400 Saint-Martin d'Hères, France
Absil, Olivier ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS)
Language :
English
Title :
On the observability of resonant structures in planetesimal disks due to planetary migration
Augereau, J.-C. 2004, in Extrasolar Planets: Today and Tomorrow, ed. J. Beaulieu, A. Lecavelier Des Etangs, & C. Terquem, ASP Conf. Ser., 321, 305
Augereau, J.-C., & Beust, H. 2006, A&A, 455, 987
Beust, H., & Dutrey, A. 2006, A&A, 446, 137
Beust, H., & Morbidelli, A. 1996, Icarus, 120, 358
Chiang, E., Lithwick, Y., Murray-Clay, R., et al. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil (Tucson: University of Arizona Press), 951, 895
Chiang, E. I., & Jordan, A. B. 2002, AJ, 124, 3430
Deller, A. T., & Maddison, S. T. 2005, ApJ, 625, 398
Duncan, M., Quinn, T., & Tremaine, S. 1989, Icarus, 82, 402
Gomes, R. S., Morbidelli, A., & Levison, H. R 2004, Icarus, 170, 492
Holland, W. S., Greaves, J. S., Zuckerman, B., et al. 1998, Nature, 392, 788
Ida, S., Bryden, G., Lin, D. N. C., & Tanaka, H. 2000, ApJ, 534, 428
Kalas, P., Fitzgerald, M. P., & Graham, J. R. 2007, ApJ, 661, L85
Krivov, A. V., Queck, M., Löhne, T., & Sremčević M. 2007, A&A, 462, 199
Kuchner, M. J., & Holman, M. J. 2003, ApJ, 588, 1110
Lecavelier Des Etangs, A., Scholl, H., Roques, F., Sicardy, B., & Vidal-Madjar, A. 1996, Icarus, 123, 168
Levison, H. F., & Duncan, M. J. 1994, Icarus, 108, 18
Meyer, M. R., Backman, D. E., Weinberger, A. J., & Wyatt, M. C. 2007, in Protostars and Planets V, ed. B. Reipurth, D. Jewitt, & K. Keil, 573
Morbidelli, A., & Moons, M. 1993, Icarus, 102, 316
Morbidelli, A., Levison, H. F., Gomes, R., & Tsiganis, K. 2006, in AAS/Division for Planetary Sciences Meeting Abstracts, AAS/Division for Planetary Sciences Meeting Abstracts, 38, #54.03
Moro-Martín, A., & Malhotra, R. 2002, AJ, 124, 2305
Murray, C. D., & Dermott, S. F. 2000, Solar System Dynamics, ISBN 0521575974, ed. C D. Murray, & S. F. Dermott (Cambridge, UK: Cambridge University Press)
Murray-Clay, R. A., & Chiang, E. I. 2005, ApJ, 619, 623
Ozernoy, L. M., Gorkavyi, N. N., Mather, J. C., & Taidakova, T. A. 2000, ApJ, 537, L147
Queck, M., Krivov, A. V., Sremčevič, M., & Thébault, P. 2007, Celestial Mechanics and Dynamical Astronomy, 39
Quillen, A. C. 2006, MNRAS, 365, 1367
Quillen, A. C., & Thorndike, S. 2002, ApJ, 578, L149
Schneider, G., Silverstone, M. D., Hines, D. C., et al. 2006, ApJ, 650, 414
Sicardy, B., Beauge, C., Ferraz-Mello, S., Lazzaro, D., & Roques, F. 1993, Celestial Mechanics and Dynamical Astronomy, 57, 373
Smith, B. A., & Terrile, R. J. 1984, Science, 226, 1421
Wisdom, J. 1980, AJ, 85, 1122
Wisdom, J., & Holman, M. 1991, AJ, 102, 1528
Wyatt, M. C. 2003, ApJ, 598, 1321
Wyatt, M. C. 2005a, A&A, 440, 937
Wyatt, M. C. 2005b, A&A, 433, 1007
Wyatt, M. C. 2006, ApJ, 639, 1153
Wyatt, M. C., Dermott, S. F., Telesco, C. M., et al. 1999, ApJ, 527, 918