Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. NeuroImage, 13(5), 903–919. https://doi.org/10.1006/nimg.2001.074
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851. https://doi.org/10.1016/j.neuroimage.2005.02.018
Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), 507–512. https://doi.org/10.1038/nn.2509
Attout, L., & Majerus, S. (2014). Working memory deficits in developmental dyscalculia: The importance of serial order. Child Neuropsychology, 21(4), 432–450. https://doi.org/10.1080/09297049.2014.922170
Attout, L., Noël, M. P., & Majerus, S. (2014). The relationship between working memory for serial order and numerical development: A longitudinal study. Developmental Psychology, 50(6), 1667–1679. https://doi.org/10.1037/a0036496
Attout, L., Van der Kaa, M. A., George, M., & Majerus, S. (2012). Dissociating short-term memory and language impairment: The importance of item and serial order information. Aphasiology, 26(3–4), 355–382. https://doi.org/10.1080/02687038.2011.604303
Binamé, F., & Poncelet, M. (2016). Order short-term memory capacity predicts nonword reading and spelling in first and second grade. Reading and Writing, 29(1), 1–20. https://doi.org/10.1007/s11145-015-9577-9
Brock, J., & Jarrold, C. (2005). Serial order reconstruction in down syndrome: Evidence for a selective deficit in verbal short-term memory. Journal of Child Psychology and Psychiatry, 46(3), 304–316. https://doi.org/10.1111/j.1469-7610.2004.00352.x
Bunge, S. A., & Wright, S. B. (2007). Neurodevelopmental changes in working memory and cognitive control. Current Opinion in Neurobiology, 17(2), 243–250. https://doi.org/10.1016/j.conb.2007.02.005
Ciesielski, K. T., Lesnik, P. G., Savoy, R. L., Grant, E. P., & Ahlfors, S. P. (2006). Developmental neural networks in children performing a categorical N-back task. NeuroImage, 33(3), 980–990. https://doi.org/10.1016/j.neuroimage.2006.07.028
Cowan, N. (1999). Models of working memory: Mechanisms of active maintenance and executive control. In A. Miyake & P. Shah (Eds.), An embedded-processes model of working memory (pp. 62–101). New York, NY: Oxford University Press.
Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive growth? Perspectives on Psychological Science, 11(2), 239–264. https://doi.org/10.1177/1745691615621279
Crone, E. A., Wendelken, C., Donohue, S., van Leijenhorst, L., & Bunge, S. A. (2006). Neurocognitive development of the ability to manipulate information in working memory. Proceedings of the National Academy of Sciences of the United States of America, 103(24), 9315–9320. https://doi.org/10.1073/pnas.0510088103
Darki, F., & Klingberg, T. (2014). The role of fronto-parietal and fronto-striatal networks in the development of working memory: A longitudinal study. Cerebral Cortex, 25(6), 1587–1595. https://doi.org/10.1093/cercor/bht352
De Visscher, A., Szmalec, A., Van Der Linden, L., & Noël, M.-P. (2015). Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia. Cognition, 144, 38–48. https://doi.org/10.1016/j.cognition.2015.07.007
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 7900–7905. https://doi.org/10.1073/pnas.1602413113
Engle, R. W., & Kane, M. J. (2004). Executive attention, working memory capacity, and a two-factor theory of cognitive control. Psychology of Learning and Motivation, 44, 145–200.
Fougnie, D., & Marois, R. (2007). Executive working memory load induces inattentional blindness. Psychonomic Bulletin & Review, 14(1), 142–147.
Friederici, A. D., & Alter, K. (2004). Lateralization of auditory language functions: A dynamic dual pathway model. Brain and Language, 89(2), 267–276. https://doi.org/10.1016/S0093-934X(03)00351-1
Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of working memory from 4 to 15 years of age. Developmental Psychology, 40(2), 177–190. https://doi.org/10.1037/0012-1649.40.2.177
Gillebert, C. R., Dyrholm, M., Vangkilde, S., Kyllingsbæk, S., Peeters, R., & Vandenberghe, R. (2012). Attentional priorities and access to short-term memory: Parietal interactions. NeuroImage, 62(3), 1551–1562. https://doi.org/10.1016/j.neuroimage.2012.05.038
Henson, R. N. A., Burgess, N., & Frith, C. D. (2000). Recoding, storage, rehearsal and grouping in verbal short-term memory: An fMRI study. Neuropsychologia, 38(4), 426–440. https://doi.org/10.1016/S0028-3932(99)00098-6
Henson, R. N. A., Hartley, T., Burgess, N., Hitch, G. J., & Flude, B. (2003). Selective interference with verbal short-term memory for serial order information: A new paradigm and tests of a timing-signal hypothesis. The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 56(8), 1307–1334. https://doi.org/10.1080/02724980244000747
Hutton, C., Bork, A., Josephs, O., Deichmann, R., Ashburner, J., & Turner, R. (2002). Image distortion correction in fMRI: A quantitative evaluation. NeuroImage, 16(1), 217–240. https://doi.org/10.1006/nimg.2001.1054
Kalm, K., & Norris, D. (2014). The representation of order information in auditory-verbal short-term memory. The Journal of Neuroscience, 34(20), 6879–6886. https://doi.org/10.1523/JNEUROSCI.4104-13.2014
Kang, H. C., Burgund, E. D., Lugar, H. M., Petersen, S. E., & Schlaggar, B. L. (2003). Comparison of functional activation foci in children and adults using a common stereotactic space. NeuroImage, 19(1), 16–28. https://doi.org/10.1016/S1053-8119(03)00038-7
Kharitonova, M., Winter, W., & Sheridan, M. A. (2015). As working memory grows: A developmental account of neural bases of working memory capacity in 5-to 8-year old children and adults. Journal of Cognitive Neuroscience, 27(9), 1775–1788. https://doi.org/10.1162/jocn_a_00824
Klingberg, T. (2006). Development of a superior frontal-intraparietal network for visuo-spatial working memory. Neuropsychologia, 44(11), 2171–2177. https://doi.org/10.1016/j.neuropsychologia.2005.11.019
Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. Journal of Cognitive Neuroscience, 14(1), 1–10. https://doi.org/10.1162/089892902317205276
Kwon, H., Reiss, A. L., & Menon, V. (2002). Neural basis of protracted developmental changes in visuo-spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 13336–13341. https://doi.org/10.1073/pnas.162486399
Leclercq, A. L., & Majerus, S. (2010). Serial-order short-term memory predicts vocabulary development: Evidence from a longitudinal study. Developmental Psychology, 46(2), 417–427. https://doi.org/10.1037/a0018540
Majerus, S. (2009). Verbal short-term memory and temporary activation of language representations: The importance of distinguishing item and order information. In A. Thorn (Ed.), Interactions between short-term and long-term memory in the verbal domain (pp. 244–276). New York, NY: Psychology Press.
Majerus, S., Attout, L., Artielle, M.-A., & Van der Kaa, M.-A. (2015). The heterogeneity of verbal short-term memory impairment in aphasia. Neuropsychologia, 77, 165–176.
Majerus, S., Attout, L., D'Argembeau, A., Degueldre, C., Fias, W., Maquet, P., … Van der Linden, M. (2012). Attention supports verbal short-term memory via competition between dorsal and ventral attention networks. Cerebral Cortex, 22(5), 1086–1097. https://doi.org/10.1093/cercor/bhr174
Majerus, S., Bastin, C., Poncelet, M., Van der Linden, M., Salmon, E., Collette, F., & Maquet, P. (2007). Short-term memory and the left intraparietal sulcus: Focus of attention? Further evidence from a face short-term memory paradigm. NeuroImage, 35(1), 353–367. https://doi.org/10.1016/j.neuroimage.2006.12.008
Majerus, S., Belayachi, S., De Smedt, B., Leclercq, A. L., Martinez Perez, T., Schmidt, C., … Maquet, P. (2008). Neural networks for short-term memory for order differentiate high and low proficiency bilinguals. NeuroImage, 42(4), 1698–1713. https://doi.org/10.1016/j.neuroimage.2008.06.003
Majerus, S., & Boukebza, C. (2013). Short-term memory for serial order supports vocabulary development: New evidence from a novel word learning paradigm. Journal of Experimental Child Psychology, 116(4), 811–828. https://doi.org/10.1016/j.jecp.2013.07.014
Majerus, S., D'Argembeau, A., Martinez Perez, T., Belayachi, S., Van der Linden, M., Collette, F., … Maquet, P. (2010). The commonality of neural networks for verbal and visual short-term memory. Journal of Cognitive Neuroscience, 22(11), 2570–2593. https://doi.org/10.1162/jocn.2009.21378
Majerus, S., Glaser, B., Van der Linden, M., & Eliez, S. (2006). A multiple case study of verbal short-term memory in velo-cardio-facial syndrome. Journal of Intellectual Disability Research, 50(6), 457–469. https://doi.org/10.1111/j.1365-2788.2006.00791.x
Majerus, S., Norris, D., & Patterson, K. (2007). What does a patient with semantic dementia remember in verbal short-term memory? Order and sound but not words. Cognitive Neuropsychology, 24(2), 131–151. https://doi.org/10.1080/02643290600989376
Majerus, S., Péters, F., Bouffier, M., Cowan, N., & Phillips, C. (2018). The dorsal attention network reflects both encoding load and top–down control during working memory. Journal of Cognitive Neuroscience, 30(2), 144–159. https://doi.org/10.1162/jocn_a_01195
Majerus, S., Poncelet, M., Greffe, C., & Van der Linden, M. (2006). Relations between vocabulary development and verbal short-term memory: The relative importance of short-term memory for serial order and item information. Journal of Experimental Child Psychology, 93(2), 95–119. https://doi.org/10.1016/j.jecp.2005.07.005
Majerus, S., Poncelet, M., Van der Linden, M., Albouy, G., Salmon, E., Sterpenich, V., … Maquet, P. (2006). The left intraparietal sulcus and verbal short-term memory: Focus of attention or serial order? NeuroImage, 32(2), 880–891. https://doi.org/10.1016/j.neuroimage.2006.03.048
Majerus, S., Van der Linden, M., Braissand, V., & Eliez, S. (2007). Verbal short-term memory in individuals with chromosome 22q11. 2 deletion: Specific deficit in serial order retention capacities? American Journal on Mental Retardation, 112(2), 79–93. https://doi.org/10.1352/0895-8017(2007)112
Marshuetz, C., & Bates, J. (2004). Functional neuroimaging and the prefrontal cortex: Organization by stimulus domain? In O. Satoru (Ed.), Prefrontal cortex: From synaptic plasticity to cognition (pp. 289–313). Boston, MA: Kluwer Academic.
Marshuetz, C., Reuter-Lorenz, P. A., Smith, E. E., Jonides, J., & Noll, D. C. (2006). Working memory for order and the parietal cortex: An event-related functional magnetic resonance imaging study. Neuroscience, 139(1), 311–316. https://doi.org/10.1016/j.neuroscience.2005.04.071
Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(Suppl. 2), 130–144. https://doi.org/10.1162/08989290051137459
Martinez Perez, T., Majerus, S., Mahot, A., & Poncelet, M. (2012). Evidence for a specific impairment of serial order short-term memory in dyslexic children. Dyslexia, 18(2), 94–109. https://doi.org/10.1002/dys.1438
Martinez Perez, T., Majerus, S., & Poncelet, M. (2012). The contribution of short-term memory for serial order to early reading acquisition: Evidence from a longitudinal study. Journal of Experimental Child Psychology, 111, 708–723. https://doi.org/10.1016/j.jecp.2011.11.007
Mazaika, P. K., Hoeft, F., Glover, G. H., & Reiss, A. L. (2009). Methods and software for fMRI analysis of clinical subjects. NeuroImage, 47, S58. https://doi.org/10.1016/S1053-8119(09)70238-1
McCormack, T., Brown, G. D. A., Vousden, J. I., & Henson, R. N. A. (2000). Children's serial recall errors: Implications for theories of short-term memory development. Journal of Experimental Child Psychology, 76(3), 222–252. https://doi.org/10.1006/jecp.1999.2550
Nee, D. E., & Jonides, J. (2013). Trisecting representational states in short-term memory. Frontiers in Human Neuroscience, 7, 796. https://doi.org/10.3389/fnhum.2013.00796
New, B., Pallier, C., & Ferrand, L. (2005). Manuel de Lexique, 3, (3.03 ed.) Computer software manual. France.
Oftinger, A.-L., & Camos, V. (2015). Maintenance mechanisms in children's verbal working memory. Journal of Educational and Developmental Psychology, 6(1), 16. https://doi.org/10.5539/jedp.v6n1p16
Ordonez Magro, L., Attout, L., Majerus, S., & Szmalec, A. (2018). Short-and long-term memory determinants of novel word form learning. Cognitive Development, 47, 146–157. https://doi.org/10.1016/j.cogdev.2018.06.002
Ravizza, S. M., Delgado, M. R., Chein, J. M., Becker, J. T., & Fiez, J. A. (2004). Functional dissociations within the inferior parietal cortex in verbal working memory. NeuroImage, 22(2), 562–573. https://doi.org/10.1016/j.neuroimage.2004.01.039
Scherf, K. S., Sweeney, J. A., & Luna, B. (2006). Brain basis of developmental change in visuospatial working memory. Journal of Cognitive Neuroscience, 18(7), 1045–1058. https://doi.org/10.1162/jocn.2006.18.7.1045
Siffredi, V., Barrouillet, P., Spencer-Smith, M., Vaessen, M., Anderson, V., & Vuilleumier, P. (2017). Examining distinct working memory processes in children and adolescents using fMRI: Results and validation of a modified Brown-Peterson paradigm. PLoS One, 12(7), e0179959. https://doi.org/10.1371/journal.pone.0179959
Spencer-Smith, M., Ritter, B. C., Mürner-Lavanchy, I., El-Koussy, M., Steinlin, M., & Everts, R. (2013). Age, sex, and performance influence the visuospatial working memory network in childhood. Developmental Neuropsychology, 38(4), 236–255. https://doi.org/10.1080/87565641.2013.784321
Tam, H., Jarrold, C., Baddeley, A. D., & Sabatos-DeVito, M. (2010). The development of memory maintenance: Children's use of phonological rehearsal and attentional refreshment in working memory tasks. Journal of Experimental Child Psychology, 107(3), 306–324. https://doi.org/10.1016/j.jecp.2010.05.006
Thomason, M. E., Race, E., Burrows, B., Whitfield-Gabrieli, S., Glover, G. H., & Gabrieli, J. D. (2009). Development of spatial and verbal working memory capacity in the human brain. Journal of Cognitive Neuroscience, 21(2), 316–332. https://doi.org/10.1162/jocn.2008.21028
Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428(6984), 751–754. https://doi.org/10.1038/nature02466
Van den Bosch, G. E., Marroun, H. E., Schmidt, M. N., Tibboel, D., Manoach, D. S., Calhoun, V. D., & White, T. J. (2014). Brain connectivity during verbal working memory in children and adolescents. Human Brain Mapping, 35(2), 698–711. https://doi.org/10.1002/hbm.22193
van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114–119. https://doi.org/10.1016/j.cognition.2010.12.013
Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., & Anderson, C. H. (2001). An integrated software suite for surface-based analyses of cerebral cortex. Journal of the American Medical Informatics Association, 8(5), 443–459. https://doi.org/10.1136/jamia.2001.0080443
Wager, T. D., Jonides, J., & Reading, S. (2004). Neuroimaging studies of shifting attention: A meta-analysis. NeuroImage, 22(4), 1679–1693. https://doi.org/10.1016/j.neuroimage.2004.03.052