[en] In recent years, the generalized multipole technique (GMT) and other fictitious source methods have been widely used to solve electromagnetic scattering problems. Nevertheless, these methods have been shown to be very sensitive to the source locations, and often produce ill-conditioned matrix systems. The current approach suggests a kind of synthesized directive expansion to reduce the dependence on the source locations, the condition number of the impedance matrix, and the number of unknowns.
Disciplines :
Electrical & electronics engineering
Author, co-author :
V Sabariego, Ruth ; University of Vigo, ETSE Telecommunicacion, Spain > Dept. of Communication Technologies > Antennas group
Landesa, Luis; University of Vigo, ETSE Telecommunicacion, Spain > Dept. of Communication Technologies > Antennas group
Obelleiro, Fernando; University of Vigo, ETSE Telecommunicacion, Spain > Dept. of Communication Technologies > Antennas group
Language :
English
Title :
Directive beam expansions for the generalized multipole technique
C. Hafner, The generalized multipole technique for computational electromagnetics, Artech House, London, England, 1990.
A. Ludwig, A new technique for numerical electromagnetics, IEEE Antennas Propagat Newsletter 3 (1989), 40-41.
Y. Leviatan and A. Boag, Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model, IEEE Trans Antennas Propagat AP-35 (1987), 1119-1126.
Y. Leviatan, A. Boag, and A. Boag, Analysis of TE scattering from dielectric cylinders using a multifilament magnetic current model, IEEE Trans Antennas Propagat 36 (1998), 1026-1031.
Y. Leviatan, A. Boag, and A. Boag, Analysis of electromagnetic scattering using a current model method, Comput Phys Commun 68 (1991), 331-345.
R.F. Harrington, Field computation by moment method, IEEE Press, New York, 1993.
K.I. Beshir and J.E. Richie, On the location and number of expansion centers for the generalized multipole technique, IEEE Trans Electromag Compat 38 (1996), 177-180.
A. Boag, Y. Leviatan, and A. Boag, On the use of SVD-improved point matching in the current-model method, IEEE Trans Antennas Propagat 41 (1993), 926-933.
M.R. Pino, L. Landesa, J.L. Rodríguez, and F. Obelleiro, A regularized solution for the generalized multipole technique, Proc IEEE Antennas Propagat Soc Int Symp, 1998 Dig, Atlanta, GA, June 1998, pp. 1254-1257.
L. Landesa, F. Obelleiro, J.L. Rodríguez, and M.R. Pino, Stable solution of the GMT-MoM method by Tikhonov regularization - Abstract, J Electromagn Waves Appl 12 (1998), 1447-1448.
L. Landesa, F. Obelleiro, J.L. Rodríguez, and M.R. Pino, Stable solution of the GMT-MoM method by Tikhonov regularization, Progress in Electromagnetic Research, PIER 20, J.A. Kong, (Editor), EMW Publishing, 1998, Chap. 3.
A. Boag and R. Mittra, Complex multipole beam approach to electromagnetic scattering problems, IEEE Trans Antennas Propagat 42 (1994), 366-372.
A. Boag and R. Mittra, Complex multipole-beam approach to three-dimensional electromagnetic scattering problems, J Opt Soc Amer 11 (1994), 1505-1512.
E. Erez and Y. Leviatan, Electromagnetic scattering analysis using a model of dipoles located in complex space, IEEE Trans Antennas Propagat 42 (1994), 1620-1624.
Y. Leviatan, Z. Baharav, and E. Heyman, Analysis of electromagnetic scattering using arrays of fictitious sources, IEEE Trans Antennas Propagat 43 (1995), 1091-1098.
Z. Baharav and Y. Leviatan, Scattering analysis using fictitious wavelet array sources, J Electromagn Waves Appl 10 (1996), 1683-1697.
P.T. Lam, S.-W. Lee, D.C.D. Chang, and K.C. Lang, Directivity optimization of a reflector antenna with cluster feeds: A closed-form solution, IEEE Trans Antennas Propagat AP-33 (1985), 1163-1174.
C.A. Balanis, Advanced engineering electromagnetics, Wiley, New York, 1988.