Angioloni, A., & Collar, C. (2013). Impact of high hydrostatic pressure on protein aggregation and rheological properties of legume batters. Food and Bioprocess Technology, 6(12), 3576–3584
Arogundade, L. A., & Mu, T. H. (2012). Influence of oxidative browning inhibitors and isolation techniques on sweet potato protein recovery and composition. Food Chemistry, 134(3), 1374–1384
Arogundade, L. A., Mu, T. H., & Añón, M. C. (2012). Heat-induced gelation properties of isoelectric and ultrafiltered sweet potato protein isolate and their gel microstructure. Food Research International, 49(1), 216–225
Barba, F. J., Terefe, N. S., Buckow, R., Knorr, D., & Orlien, V. (2015). New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods. A review. Food Research International, 77, 725–742
Boutureira, O., & Bernardes, G. J. L. (2015). Advances in chemical protein modification. Chemical Reviews, 115(5), 2174–2195
Cando, D., Herranz, B., Borderías, A. J., & Moreno, H. M. (2015). Effect of high pressure on reduced sodium chloride surimi gels. Food Hydrocolloids, 51, 176–187
Chang, C., Tu, S., Ghosh, S., & Nickerson, M. T. (2015). Effect of pH on the inter-relationships between the physicochemical, interfacial and emulsifying properties for pea, soy, lentil and canola protein isolates. Food Research International, 77, 360–367
Chen, X., Li, P., Nishiumi, T., Takumi, H., Suzuki, A., & Chen, C. G. (2014). Effects of high pressure processing on the cooking loss and gel strength of chicken breast actomyosin containing sodium alginate. Food and Bioprocess Technology, 7(12), 3608–3617
Cheung, L., Wanasundara, J., & Nickerson, M. T. (2014). Effects of pH and NaCl levels on the physicochemical and emulsifying properties of a cruciferin protein isolate. Food Biophysics, 9(2), 105–113
De Maria, S., Ferrari, G., & Maresca, P. (2016). Effects of high hydrostatic pressure on the conformational structure and the functional properties of bovine serum albumin. Innovative Food Science & Emerging Technologies, 33, 67–75
FAOSTAT. (2016). Production quantity [Internet]. Food and Agricultural Organization. http://www.fao.org/faostat/en/#data/QC. Accessed 01/06/18
Gaspar, A. L. C., & De Góes-Favoni, S. P. (2015). Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chemistry, 171, 315–322
Grossi, A., Olsen, K., Bolumar, T., Rinnan, Å., Øgendal, L. H., & Orlien, V. (2016). The effect of high pressure on the functional properties of pork myofibrillar proteins. Food Chemistry, 196, 1005–1015
Han, M., Wang, P., Xu, X., & Zhou, G. (2014). Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Research International, 62, 1175–1182
Han, Y., Wang, J., Li, Y., Hang, Y., Yin, X., & Li, Q. (2015). Circular dichroism and infrared spectroscopic characterization of secondary structure components of protein Z during mashing and boiling processes. Food Chemistry, 188, 201–209
He, R., He, H. Y., Chao, D., Ju, X., & Aluko, R. (2014). Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food and Bioprocess Technology, 7(5), 1344–1353
Jia, Y. J., Liang, X. H., & Zhu, W. X. (2010). Separation of β-amylase from sweet potato by different precipitation methods. Food Science, 31, 22–25
Khan, N. M., Mu, T. H., Zhang, M., & Chen, J. W. (2013). Effects of high hydrostatic pressure on the physicochemical and emulsifying properties of sweet potato protein. International Journal of Food Science & Technology, 48(6), 1260–1268
Khan, N. M., Mu, T. H., Zhang, M., & Arogundade, L. A. (2014). The effects of pH and high hydrostatic pressure on the physicochemical properties of a sweet potato protein emulsion. Food Hydrocolloids, 35, 209–216
Khan, N. M., Mu, T. H., Sun, H. N., Zhang, M., & Chen, J. W. (2015). Effects of high hydrostatic pressure on secondary structure and emulsifying behavior of sweet potato protein. High Pressure Research, 35(2), 189–202
Kim, J. H. J., Varankovich, N. V., & Nickerson, M. T. (2016). The effect of pH on the gelling behaviour of canola and soy protein isolates. Food Research International, 81, 31–38
Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature, 227(5259), 680–685
Liang, Y., Guo, B., Zhou, A., et al. (2016). Effect of high pressure treatment on gel characteristics and gel formation mechanism of bighead carp (Aristichthys nobilis) surimi gels. Journal of Food Processing and Preservation, 6, 1–8
Mu, T. H., Tan, S. S., Chen, J. W., & Xue, Y. L. (2009a). Effect of pH and NaCl/CaCl2 on the solubility and emulsifying properties of sweet potato protein. Journal of the Science of Food and Agriculture, 89(2), 337–342
Mu, T. H., Tan, S. S., & Xue, Y. L. (2009b). The amino acid composition, solubility and emulsifying properties of sweet potato protein. Food Chemistry, 112(4), 1002–1005
Ni, N., Wang, Z. Y., He, F., et al. (2014). Gel properties and molecular forces of lamb myofibrillar protein during heat induction at different pH values. Process Biochemistry, 49(4), 631–636
Norton, T., & Sun, D. W. (2008). Recent advances in the use of high pressure as an effective processing technique in the food industry. Food and Bioprocess Technology, 1(1), 2–34
Peyrano, F., Speroni, F., & Avanza, M. V. (2016). Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure. Innovative Food Science & Emerging Technologies, 33, 38–46
Puppo, C., Chapleau, N., Speroni, F., de Lamballerie-Anton, M., Michel, F., Añón, C., & Anton, M. (2004). Physicochemical modifications of high-pressure-treated soybean protein isolates. Journal of Agricultural and Food Chemistry, 52(6), 1564–1571
Qin, Z., Guo, X., Lin, Y., Chen, J., Liao, X., Hu, X., & Wu, J. (2013). Effects of high hydrostatic pressure on physicochemical and functional properties of walnut (Juglans regia L.) protein isolate. Journal of the Science of Food and Agriculture, 93(5), 1105–1111
Queirós, R. P., Saraiva, J. A., & Da Silva, J. A. L. (2018). Tailoring structure and technological properties of plant proteins using high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 58(9), 1538–1556
Renkema, J. M. S., Gruppen, H., & Van, V. T. (2002). Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions. Journal of Agricultural and Food Chemistry, 50(21), 6064–6071
San Martin, M. F., Barbosa-Cánovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition, 42(6), 627–645
Sun, X. D., & Arntfield, S. D. (2012). Molecular forces involved in heat-induced pea protein gelation: Effects of various reagents on the rheological properties of salt-extracted pea protein gels. Food Hydrocolloids, 28(2), 325–332
Sun, M. J., Mu, T. H., Sun, H. N., et al. (2014). Digestibility and structural properties of thermal and high hydrostatic pressure treated sweet potato (Ipomoea batatas L.) protein. Plant Foods for Human Nutrition, 69(3), 270–275
Tang, C. H., & Ma, C. Y. (2009). Effect of high pressure treatment on aggregation and structural properties of soy protein isolate. LWT-Food Science and Technology, 42(2), 606–611
Wang, P., Xu, X., Huang, M., Huang, M., & Zhou, G. (2014). Effect of pH on heat-induced gelation of duck blood plasma protein. Food Hydrocolloids, 35, 324–331
Wang, K. Q., Luo, S. Z., Zhong, X. Y., Cai, J., Jiang, S. T., & Zheng, Z. (2017a). Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation. Food Chemistry, 214, 393–399
Wang, M., Chen, X., Zou, Y., Chen, H., Xue, S., Qian, C., Wang, P., Xu, X., & Zhou, G. (2017b). High-pressure processing-induced conformational changes during heating affect water holding capacity of myosin gel. International Journal of Food Science & Technology, 52(3), 724–732
Whitmore, L., & Wallace, B. A. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32(suppl 2), 668–673 http://dichroweb.cryst.bbk.ac.uk. Accessed 13. 02. 17
Wihodo, M., & Moraru, C. I. (2013). Physical and chemical methods used to enhance the structure and mechanical properties of protein films: A review. Journal of Food Engineering, 114(3), 292–302
Wu, C., Hua, Y., Chen, Y., Kong, X., & Zhang, C. (2017). Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size. Food Hydrocolloids, 66, 389–395
Yang, C., Wang, Y., Vasanthan, T., & Chen, L. (2014). Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocolloids, 40, 225–236
Zhang, M., Mu, T. H., & Sun, M. J. (2014). Purification and identification of antioxidant peptides from sweet potato protein hydrolysates by Alcalase. Journal of Functional Foods, 7, 191–200
Zhang, Z., Yang, Y., Tang, X., Chen, Y., & You, Y. (2015). Chemical forces and water holding capacity study of heat-induced myofibrillar protein gel as affected by high pressure. Food Chemistry, 188, 111–118
Zhang, Z., Yang, Y., Zhou, P., Zhang, X., & Wang, J. (2017). Effect of high pressure modification on conformation and gelation properties of myofibrillar protein. Food Chemistry, 217, 678–686
Zhou, A. M., Lin, L. Y., Liang, Y., et al. (2014). Physicochemical properties of natural actomyosin from threadfin bream (Nemipterus spp.) induced by high hydrostatic pressure. Food Chemistry, 156, 402–407
Zhu, Z., Guan, Q., Koubaa, M., Barba, F. J., Roohinejad, S., Cravotto, G., Yang, X., Li, S., & He, J. (2017). HPLC-DAD-ESI-MS2 analytical profile of extracts obtained from purple sweet potato after green ultrasound-assisted extraction. Food Chemistry, 215, 391–400