[en] The infection of human fetal thymus organ cultures (FTOC) with coxsackievirus B4 E2 (CVB4 E2) was investigated. Both positive- and negative-strand viral RNA were detected by real-time quantitative reverse transcription-PCR (RT-PCR) in CVB4 E2-infected FTOC, which supported high yields of virus production (similar to10(6) 50% tissue culture infective doses/ml), and in flow-sorted thymocyte populations for 7 days after inoculation. Cortical CD4(+) CD8(+) thymocytes were found to be the principal targets of infection. Inoculation of human FTOC with CVB4 E2 led to a marked and progressive depletion of immature thymocytes (CD4(+) CD8(+) cells) with no enhancement of Annexin V-positive cells. CVB4 E2 replication caused significant major histocompatibility complex (MHC) class I upregulation on these cells. MHC class I upregulation was correlated with positive- and negative-strand RNA quantitative detection and the release of infectious particles. In addition, chloroquine treatment of FTOC and single-thymocyte suspensions suggested that MHC class I upregulation on thymocytes was the result of direct infection rather than caused by production of soluble factors such as alpha interferon. Thus, CVB4 E2 can infect human fetal thymocytes, which subsequently results in quantitative and qualitative abnormalities of these cells.
Disciplines :
Microbiology Immunology & infectious disease
Author, co-author :
Brilot, Fabienne
Geenen, Vincent ; Université de Liège - ULiège > Centre d'immunologie
Hober, Didier
Stoddart, Cheryl
Language :
English
Title :
Coxsackievirus B4 infection of human fetal thymus cells
Publication date :
2004
Journal title :
Journal of Virology
ISSN :
0022-538X
eISSN :
1098-5514
Publisher :
American Society for Microbiology (ASM), Washington, United States - District of Columbia
Volume :
78
Issue :
18
Pages :
9854-9861
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Agol, V. I., G. A. Belov, K. Bienz, D. Egger, M. S. Kolesnikova, N. T. Raikhlin, L. I. Romanova, E. A. Smirnova, and E. A. Tolskaya, 1998. Two types of death of poliovirus-infected cells: caspase involvement in the apoptosis but not cytopathic effect. Virology 252:343-353.
Berkowitz, R. D., S. Alexander, C. Bare, V. Linquist-Stepps, M. Bogan, M. E. Moreno, L. Gibson, E. D. Wieder, J. Kosek, C. A. Stoddart, and J. M. McCune. 1998. CCR5- and CXCR4-utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo. J. Virol. 72:10108-10117.
Blue, M. L., H. Levine, J. F. Daley, K. R. Branton, and S. F. Schlossman. 1989. Expression of CD1 and class I MHC antigens by human thymocytes. J. Immunol. 142:2714-2720.
Bonyhadi, M. L., L. Su, J. Auten, J. M. McCune, and H. Kaneshima. 1995. Development of a human thymic organ culture model for the study of HIV pathogenesis. AIDS Res. Hum. Retrovir. 11:1073-1080.
Brilot, F., W. Chehadeh, C. Charlet-Renard, H. Martens, V. Geenen, and D. Hober. 2002. Persistent infection of human thymic epithelial cells by coxsackievirus B4. J. Virol. 76:5260-5265.
Chatterjee, N. K., J. Hou, P. Dockstader, and T. Charbonneau. 1992. Coxsackievirus B4 infection alters thymic, splenic, and peripheral lymphocyte repertoire preceding onset of hyperglycemia in mice. J. Med. Virol. 38:124-131.
Chehadeh, W., A. Bouzidi, G. Alm, P. Wattre, and D. Hober. 2001. Human antibodies isolated from plasma by affinity chromatography increase the coxsackievirus B4-induced synthesis of interferon-alpha by human peripheral blood mononuclear cells in vitro. J. Gen. Virol. 82:1899-1907.
Chehadeh, W., J. Kerr-Conte, F. Pattou, G. Alm, J. Lefebvre, P. Wattre, and D. Hober. 2000. Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells. J. Virol. 74:10153-10164.
Chehadeh, W., J. Weill, M. C. Vantyghem, G. Alm, J. Lefebvre, P. Wattre, and D. Hober. 2000. Increased level of interferon-alpha in blood of patients with insulin-dependent diabetes mellitus: relationship with coxsackievirus B infection. J. Infect. Dis. 181:1929-1939.
Dahlquist, G. 2000. Fetal virus infection a risk factor of diabetes mellitus type 1 in children. Lakartidningen 97:313-315.
Dahlquist, G., G. Frisk, S. A. Ivarsson, L. Svanberg, M. Forsgren, and H. Diderholm. 1995. Indications that maternal coxsackie B virus infection during pregnancy is a risk factor for childhood-onset IDDM. Diabetologia 38:1371-1373.
Fohlman, J., and G. Friman. 1993. Is juvenile diabetes a viral disease? Ann. Med. 25:569-574.
Geenen, V., and G. Kroemer. 1993. Multiple ways to cellular immune tolerance. Immunol. Today 14:573-575.
Ginsberg-Fellner, F., M. E. Witt, S. Yagihashi, M. J. Dobersen, F. Taub, B. Fedun, R. C. McEvoy, S. H. Roman, R. G. Davies, L. Z. Cooper, et al. 1984. Congenital rubella syndrome as a model for type 1 (insulin-dependent) diabetes mellitus: increased prevalence of islet cell surface antibodies. Diabetologia 27(Suppl.):87-89.
Hayashi, H., K. Tanaka, F. Jay, G. Khoury, and G. Jay. 1985. Modulation of the tumorigenicity of human adenovirus-12-transformed cells by interferon. Cell 43:263-267.
Hober, D., W. Chehadeh, A. Bouzidi, and P. Wattre. 2001. Antibody-dependent enhancement of coxsackievirus B4 infectivity of human peripheral blood mononuclear cells results in increased interferon-alpha synthesis. J. Infect. Dis. 184:1098-1108.
Horwitz, M. S., and N. Sarvetnick. 1999. Viruses, host responses, and autoimmunity. Immunol. Rev. 169:241-253.
Hyoty, H., M. Hiltunen, M. Knip, M. Laakkonen, P. Vahasalo, J. Karjalainen, P. Koskela, M. Roivainen, P. Leinikki, T. Hovi, et al. 1995. A prospective study of the role of coxsackic B and other enterovirus infections in the pathogenesis of IDDM. Diabetes 44:652-657.
Iwasaki, T., N. Monma, R. Satodate, R. Kawana, and T. Kurata. 1985. An immunofluorescent study of generalized coxsackie virus B3 infection in a newborn infant. Acta Pathol. Jpn. 35:741-748.
Keir, M. E., C. A. Stoddart, V. Linquist-Stepps, M. E. Moreno, and J. M. McCune. 2002. IFN-alpha secretion by type 2 predendritic cells up-regulates MHC class I in the HIV-1-infected thymus. J. Immunol. 168:325-331.
Keskinen, P., T. Ronni, S. Matikainen, A. Lehtonen, and I. Julkunen. 1997. Regulation of HLA class I and II expression by interferons and influenza A virus in human peripheral blood mononuclear cells. Immunology 91:421-429.
Kesson, A. M., Y. Cheng, and N. J. King. 2002. Regulation of immune recognition molecules by flavivirus, West Nile. Viral. Immunol. 15:273-283.
Klein, L., and B. Kyewski. 2000. Self-antigen presentation by thymic stromal cells: a subtle division of labor. Curr. Opin. Immunol. 12:179-186.
Klingel, K., S. Stephan, M. Sauter, R. Zell, B. M. McManus, B. Bultmann, and R. Kandolf. 1996. Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets. J. Virol, 70:8888-8895.
Knip, M., and H. K. Akerblom. 1999. Environmental factors in the pathogenesis of type 1 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 107(Suppl. 3):S93-S100.
Koszinowski, U., and H. Ertl. 1975. Altered serological and cellular reactivity to H-2 antigens after target cell infection with vaccinia virus. Nature 257:596-597.
Kovalev, G., K. Duus, L. Wang, R. Lee, M. Bonyhadi, D. Ho, J. M. McCune, H. Kaneshima, and L. Su. 1999. Induction of MHC class I expression on immature thymocytes in HIV-1-infected SCID-hu Thy/Liv mice: evidence of indirect mechanisms. J. Immunol. 162:7555-7562.
Lansdown, A. B. 1977. Histological observations on thymic development in fetal and newborn mammals subject to intrauterine growth retardation. Biol. Neonate 31:252-259.
Lawlor, D. A., J. Zemmour, P. D. Ennis, and P. Parham. 1990. Evolution of class-I MHC genes and proteins: from natural selection to thymic selection. Annu. Rev. Immunol. 8:23-63.
Le, P. T., S. Lazorick, L. P. Whichard, Y. C. Yang, S. C. Clark, B. F. Haynes, and K. H. Singer. 1990. Human thymic epithelial cells produce IL-6, granulocyte-monocyte-CSF, and leukemia inhibitory factor. J. Immunol. 145:3310-3315.
Leparc, I., M. Aymard, and F. Fuchs. 1994. Acute, chronic, and persistent enterovirus and poliovirus infections: detection of viral genome y seminested PCR amplification in culture-negative samples. Mol. Cell. Probes 8:487-495.
Liu-Wu, Y., A. Svenningsson, S. Stemme, J. Holm, and O. Wiklund. 1997. Identification and analysis of macrophage-derived foam cells from human atherosclerotic lesions by using a "mock" FL3 channel in flow cytometry. Cytometry 29:155-164.
Lozovskaia, L. S., S. M. Osipov, I. V. Zubkova, and V. D. Soboleva. 1997. Study of vertical transmission of coxsackie group enteroviruses in the etiology of congenital immunodeficiencies. Vopr. Virusol. 42:175-179.
Matteucci, D., M. Paglianti, A. M. Giangregorio, M. R. Capobianchi, F. Dianzani, and M. Bendinelli. 1985. Group B coxsackieviruses readily establish persistent infections in human lymphoid cell lines. J. Virol. 56:651-654.
Oldstone, M. B. 1998. Molecular mimicry and immune-mediated diseases. FASEB J. 12:1255-1265.
Otonkoski, T., M. Roivainen, O. Vaarala, B. Dinesen, J. A. Leipala, T. Hovi, and M. Knip. 2000. Neonatal type I diabetes associated with maternal echo-virus 6 infection: a case report. Diabetologia 43:1235-1238.
Paabo, S., T. Nilsson, and P. A. Peterson. 1986. Adenoviruses of subgenera B, C, D, and E modulate cell-surface expression of major histocompatibility complex class I antigens. Proc. Natl. Acad. Sci. USA 83:9665-9669.
Schmidtke, M., B. Gluck, I. Merkle, P. Hofmann, A. Stelzner, and D. Gemsa. 2000. Cytokine profiles in heart, spleen, and thymus during the acute stage of experimental coxsackievirus B3-induced chronic myocarditis. J. Med. Virol. 61:518-526.
See, D. M., and J. G. Tilles. 1995. Pathogenesis of virus-induced diabetes in mice. J. Infect. Dis. 171:1131-1138.
Shih, F. F., L. Mandik-Nayak, B. T. Wipke, and P. M. Allen. 2004. Massive thymic deletion results in systemic autoimmunity through elimination of CD4+ CD25+ T regulatory cells. J. Exp. Med, 199:323-335.
Sinha, A. A., M. T. Lopez, and H. O. McDevitt. 1990. Autoimmune diseases: the failure of self tolerance. Science 248:1380-1388.
Vermes, I., C. Haanen, H. Steffens-Nakken, and C. Reutelingsperger. 1995. A novel assay for apoptosis: flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein-labeled Annexin V. J. Immunol. Methods 184:39-51.
Weijer, K., C. H. Uittenbogaart, A. Voordouw, F. Couwenberg, J. Seppen, B. Blom, F. A. Vyth-Dreese, and H. Spits. 2002. Intrathymic and extrathymic development of human plasmacytoid dendritic cell precursors in vivo. Blood 99:2752-2759.
Whitton, J. L., and R. S. Fujinami. 1999. Viruses as triggers of autoimmunity: facts and fantasies. Curr. Opin. Microbiol. 2:392-397.
Yewdell, J. W., and J. R. Bennink. 1999. Mechanisms of viral interference with MHC class I antigen processing and presentation. Annu. Rev. Cell. Dev. Biol. 15:579-606.
Yewdell, J. W., and A. B. Hill. 2002. Viral interference with antigen presentation. Nat. Immunol. 3:1019-1025.
Yin, H., A. K. Berg, T. Tuvemo, and G. Frisk. 2002, Enterovirus RNA is found in peripheral blood mononuclear cells in a majority of type 1 diabetic children at onset. Diabetes 51:1964-1971.
Yoon, J. W., M. Austin, T. Onodera, and A. L. Notkins. 1979. Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N. Engl. J. Med. 300:1173-1179.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.