[en] Within semiconductor quantum dots (QDs), exciton recombination processes are noteworthy
for depending on the nature of surface coordination and nanocrystal/ligand bonding.
The influence of the molecular surroundings on QDs optoelectronic properties is therefore
intensively studied. Here, from the converse point of view, we anlayze and model the
influence of QDs optoelectronic properties on their ligands. As revealed by sum-frequency
generation spectroscopy, the vibrational structure of ligands is critically correlated to QDs
electronic structure when these are pumped into their excitonic states. Given the different
hypotheses commonly put forward, such a correlation is expected to derive from either a
direct overlap between the electronic wavefunctions, a charge transfer, or an energy transfer.
Assuming that the polarizability of ligands is subordinate to the local electric field induced by
excitons through dipolar interaction, our classical model based on nonlinear optics unambiguously
supports the latter hypothesis.
Disciplines :
Physics
Author, co-author :
Noblet, Thomas ; Université Paris-Sud 11 > laboratoire de Chimie Physique
Dreesen, Laurent ; Université de Liège - ULiège > Département de physique > Biophotonique
Boujday, Souhir; Université Paris-Sorbonne (Paris IV) > Laboratoire de Réactivité de Surface
Méthivier, Christophe; Université Paris-Sorbonne (Paris IV) > Laboratoire de Réactivité de Surface
Busson, Bertrand; Université Paris-Sud 11 > Laboratoire de Chimie Physique
Tadjeddine, A.; Université Paris-Sud 11 > Laboratoire de Chimie Physique
Humbert, Christophe; Université Paris-Sud 11 > Laboratoire de Chimie Physique
Language :
English
Title :
Semiconductor quantum dots reveal dipolar coupling from exciton to ligand vibration
Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic states. J. Chem. Phys. 80, 4403–4409 (1984).
Masumoto, Y. & Sonobe, K. Size-dependent energy levels of CdTe quantum dots. Phys. Rev. B 56, 9734–9737 (1997).
Wang, X. et al. Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 68, 125318 (2003).
Wuister, S. F., Swart, I., van Driel, F., Hickey, S. G. & de Mello Donegá, C. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 3, 503–507 (2003).
Sapra, S. & Sarma, D. D. Evolution of the electronic structure with size in II-VI semiconductor nanocrystals. Phys. Rev. B 69, 125304 (2004).
Law, M. et al. Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Lett. 8, 3904–3910 (2008).
Vanmaekelbergh, D. & Liljeroth, P. Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chem. Soc. Rev. 34, 299–312 (2005).
Cooney, R. R., Sewall, S. L., Sagar, D. M. & Kambhampati, P. Gain control in semiconductor quantum dots via state-resolved optical pumping. Phys. Rev. Lett. 102, 127404 (2009).
Umar, A. A., Reshak, A. H., Oyama, M. & Plucinski, K. J. Fluorescent and nonlinear optical features of CdTe quantum dots. J. Mater. Sci. Mater. Electron. 23, 546–550 (2012).
Humbert, C. et al. Linear and nonlinear optical properties of functionalized CdSe quantum dots prepared by plasma sputtering and wet chemistry. J. Colloid Interface Sci. 445, 69–75 (2015).
Heuff, R. F., Swift, J. L. & Cramb, D. T. Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities. Phys. Chem. Chem. Phys. 9, 1870–1880 (2007).
Costa-Fernandez, J. M., Pereiro, R. & Sanz-Medel, A. The use of luminescent quantum dots for optical sensing. Trends Anal. Chem. 25, 207–218 (2006).
Tyrakowski, C. M. & Snee, P. T. A primer on synthesis, water-solubilization, and functionalization of quantum dots, their use as biological sensing agents, and present status. Phys. Chem. Chem. Phys. 16, 837–855 (2014).
Wegner, K. D. & Hildebrandt, N. Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. Chem. Soc. Rev. 44, 4792–4834 (2015).
Yong, K.-T. et al. Aqueous phase synthesis of CdTe quantum dots for biophotonics. J. Biophotonics 4, 9–20 (2011).
Li, J. & Zhu, J.-J. Quantum dots for fluorescent biosensing and bio-imaging applications. Analyst 138, 2506–2515 (2013).
Efros, A. L. & Rosen, M. Quantum size level structure of narrow-gap semiconductor nanocrystals: effect of band coupling. Phys. Rev. B 58, 7120–7135 (1998).
Ajiki, H., Tsuji, T., Kawano, K. & Cho, K. Optical spectra and exciton-light coupled modes of a spherical semiconductor nanocrystal. Phys. Rev. B 66, 245322 (2002).
Trani, F., Ninno, D. & Iadonisi, G. Tight-binding formulation of the dielectric response in semiconductor nanocrystals. Phys. Rev. B 76, 085326 (2007).
Demchenko, D. O. & Wang, L.-W. Optical transitions and nature of Stokes shift in spherical CdS quantum dots. Phys. Rev. B 73, 155326 (2006).
Caram, J. R. et al. PbS nanocrystal emission is governed by multiple emissive states. Nano Lett. 16, 6070–6077 (2016).
Voznyy, O. et al. Origins of stokes shift in PbS nanocrystals. Nano Lett. 17, 7191–7195 (2017).
Liu, Y., Kim, D., Morris, O. P., Zhitomirsky, D. & Grossman, J. C. Origins of the stokes shift in PbS quantum dots: impact of polydispersity, ligands, and defects. ACS Nano 12, 2838–2845 (2018).
Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. ‘On’/‘off’ fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001).
Voznyy, O. & Sargent, E. H. Atomistic model of fluorescence intermittency of colloidal quantum dots. Phys. Rev. Lett. 112, 157401 (2014).
Efros, A. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996).
Rodina, A. V. & Efros, A. L. Radiative recombination from dark excitons in nanocrystals: activation mechanisms and polarization properties. Phys. Rev. B 93, 155427–155441 (2016).
Fomin, V. M. et al. Photoluminescence of spherical quantum dots. Phys. Rev. B 57, 2415–2425 (1998).
Boehme, S. C. et al. Density of trap states and auger-mediated electron trapping in CdTe quantum-dot solids. Nano Lett. 15, 3056–3066 (2015).
Zhang, H., Zhou, Z. & Yang, B. The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 107, 8–13 (2003).
Frederick, M. T. & Weiss, E. A. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand. ACS Nano 4, 3195–3200 (2010).
Liang, Y., Thorne, J. E. & Parkinson, B. A. Controlling the electronic coupling between CdSe quantum dots and thiol capping ligands via pH and ligand selection. Langmuir 28, 11072–11077 (2012).
Kilina, S., Velizhanin, K. A., Ivanov, S., Prezhdo, O. V. & Tretiak, S. Surface ligands increase photoexcitation relaxation rates in CdSe quantum dots. ACS Nano 6, 6515–6524 (2012).
Frederick, M. T., Amin, V. A. & Weiss, E. A. Optical properties of strongly coupled quantum dot-ligand systems. J. Phys. Chem. Lett. 4, 634–640 (2013).
Jin, S. et al. Enhanced rate of radiative decay in CdSe quantum dots upon adsorption of an exciton-delocalizing ligand. Nano Lett. 14, 5323–5328 (2014).
Lifshitz, E. Evidence in support of exciton to ligand vibrational coupling in colloidal quantum dots. J. Phys. Chem. Lett. 6, 4336–4347 (2015).
Xu, F. et al. Impact of different surface ligands on the optical properties of PbS quantum dot solids. Materials 8, 1858–1870 (2015).
Azpiroz, J. M. & Angelis, F. D. Ligand induced spectral changes in CdSe quantum dots. ACS Appl. Mater. Interfaces 7, 19736–19745 (2015).
Giansante, C. et al. ‘Darker-than-black’ PbS quantum dots: enhancing optical absorption of colloidal semiconductor nanocrystals via short conjugated ligands. J. Am. Chem. Soc. 137, 1875–1886 (2015).
Debellis, D., Gigli, G., ten Brinck, S., Infante, I. & Giansante, C. Quantum-confined and enhanced optical absorption of colloidal PbS quantum dots at wavelengths with expected bulk behavior. Nano Lett. 17, 1248–1254 (2017).
Kambhampati, P. Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc. Chem. Res. 44, 1–13 (2011).
Yazdani, N. et al. Tuning electron-phonon interactions in nanocrystals through surface termination. Nano Lett. 18, 2233–2242 (2018).
Schnitzenbaumer, K. J. & Dukovic, G. Comparison of phonon damping behavior in quantum dots capped with organic and inorganic ligands. Nano Lett. 18, 3667–3674 (2018).
Kambhampati, P. On the kinetics and thermodynamics of excitons at the surface of semiconductor nanocrystals: are there surface excitons? Chem. Phys. 446, 92–107 (2015).
Arnolds, H. & Bonn, M. Ultrafast surface vibrational dynamics. Surf. Sci. Rep. 65, 45–66 (2010).
Zhang, Z., Piatkowski, L., Bakker, H. J. & Bonn, M. Ultrafast vibrational energy transfer at the water/air interface revealed by two-dimensional surface vibrational spectroscopy. Nat. Chem. 3, 888–893 (2011).
Dalstein, L. et al. Revealing the interplay between adsorbed molecular layers and gold nanoparticles by linear and nonlinear optical properties. J. Phys. Chem. C. 119, 17146–17155 (2015).
Caudano, Y. et al. Electron-phonon couplings at C60 interfaces: a case study by two-color, infrared-visible sum-frequency generation spectroscopy. J. Electron Spectrosc. Relat. Phenom. 129, 139–147 (2003).
Tourillon, G. et al. Total internal reflection sum-frequency generation spectroscopy and dense gold nanoparticles monolayer: a route for probing adsorbed molecules. Nanotechnology 18, 415301–415307 (2007).
Blanton, S. A., Leheny, R. L., Hines, M. A. & Guyot-Sionnest, P. Dielectric dispersion measurements of CdSe nanocrystal colloids: observation of a permanent dipole moment. Phys. Rev. Lett. 79, 865–868 (1997).
Shim, M. & Guyot-Sionnest, P. Permanent dipole moment and charges in colloidal semiconductor quantum dots. J. Chem. Phys. 111, 6955–6964 (1999).
Haug, H. & Koch, S. Quantum Theory of the Optical and Electronic Properties of Semiconductors, fifth edn. (World Scientific, Singapore 2009).
Zhuang, X., Miranda, P. B., Kim, D. & Shen, Y. R. Mapping molecular orientation and conformation interfaces by surface nonlinear optics. Phys. Rev. B 59, 12632 (1999).
Medintz, I. L., Uyeda, H. T., Goldman, E. R. & Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mat. 4, 435–446 (2005).
Sperling, R. A. & Parak, W. J. Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos. Trans. R. Soc. A 368, 1333–1383 (2010).
Moreels, I., Fritzinger, B., Martins, J. C. & Hens, Z. Surface chemistry of colloidal pbse nanocrystals. J. Am. Chem. Soc. 130, 15081–15086 (2008).
Grisorio, R., Debellis, D., Suranna, G. P., Gigli, G. & Giansante, C. The dynamic organic/inorganic interface of colloidal pbs quantum dots. Angew. Chem. Int. Ed. 55, 6628–6633 (2016).
Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).
Noblet, T., Dreesen, L., Hottechamps, J. & Humbert, C. A global method for handling fluorescence spectra at high concentration derived from the competition between emission and absorption of colloidal CdTe quantum dots. Phys. Chem. Chem. Phys. 19, 26559–26565 (2017).
Kett, P. J. N. et al. Structural changes in a polyelectrolyte multilayer assembly investigated by reflection absorption infrared spectroscopy and sum frequency generation spectroscopy. J. Phys. Chem. B 113, 1559–1568 (2009).
Zhang, Y. & Clapp, A. Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11, 11036–11055 (2011).
Krause, M. M. & Kambhampati, P. Linking surface chemistry to optical properties of semiconductor nanocrystals. Phys. Chem. Chem. Phys. 17, 18882–18894 (2015).
Hung, K.-K., Stege, U. & Hore, D. K. IR absorption, Raman scattering, and IR-Vis sum-frequency generation spectroscopy as quantitative probes of surface structure. Appl. Spec. Rev. 50, 351–376 (2015).
Jethi, L., Mack, T. G. & Kambhampati, P. Extending semiconductor nanocrystals from the quantum dot regime to the molecular cluster regime. J. Phys. Chem. C 121, 26102–26107 (2017).
Kovalenko, M. V., Scheele, M. & Talapin, D. V. Colloidal nanocrystals with molecular metal chalcogenide surface ligands. Science 324, 1417–1420 (2009).
Wolcott, A. et al. Anomalously large polarization effect responsible for excitonic red shifts in PbSe quantum dot solids. J. Phys. Chem. Lett. 2, 795–800 (2011).
Swenson, N. K., Ratner, M. A. & Weiss, E. A. Computational study of the resonance enhancement of Raman signals of ligands adsorbed to CdSe clusters through photoexcitation of the cluster. J. Phys. Chem. C 120, 20954–20960 (2016).
Sengupta, S., Bromley, L. & Velarde, L. Aggregated states of chalcogenorhodamine dyes on nanocrystalline titania revealed by doubly resonant sum frequency spectroscopy. J. Phys. Chem. C 121, 3424–3436 (2017).
Lombardi, J. R. & Birke, R. L. Theory of surface-enhanced raman scattering in semiconductors. J. Phys. Chem. C 118, 11120–11130 (2014).
Barbillon, G., Noblet, T., Busson, B., Tadjeddine, A. & Humbert, C. Localised detection of thiophenol with gold nanotriangles highly structured as honeycombs by nonlinear Sum Frequency Generation spectroscopy. J. Mater. Sci. 53, 4554–4562 (2018).