Aldaoud, A.; School of Physics, University of Melbourne, Parkville, Victoria, Australia
Soto-Breceda, A.; National Vision Research Institute, Australian College of Optometry, Carlton, Victoria, Australia, Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia, Data 61, CSIRO, Docklands, Victoria, Australia
Tong, Wenyi ; Université de Liège - ULiège > Département de physique > Physique théorique des matériaux
Conductier, G.; Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
Tonta, M. A.; Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
Coleman, H. A.; Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
Parkington, H. C.; Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
Clarke, I.; Department of Physiology and Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
Redouté, Jean-Michel ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes microélectroniques intégrés
Garrett, D. J.; School of Physics, University of Melbourne, Parkville, Victoria, Australia
Prawer, S.; School of Physics, University of Melbourne, Parkville, Victoria, Australia
Language :
English
Title :
Wireless multichannel optogenetic stimulators enabled by narrow bandwidth resonant tank circuits
Publication date :
2018
Journal title :
Sensors and Actuators. A, Physical
ISSN :
0924-4247
eISSN :
1873-3069
Publisher :
Elsevier B.V.
Volume :
271
Pages :
201-211
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
GNT1101717, NHMRC, National Health and Medical Research Council
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., de Lecea, L., Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450 (2007), 420–424.
Albert, P.R., Light up your life: optogenetics for depression?. J. Psychiatry Neurosci. 39 (2014), 3–5.
Steinbeck, J.A., Choi, S.J., Mrejeru, A., Ganat, Y., Deisseroth, K., Sulzer, D., et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model. Nat. Biotechnol. 33 (2015), 204–209.
Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G., Deisseroth, K., Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:no. 9 (2005), 1263–1268.
Auffret, M., Ravano, V.L., Rossi, G.M., Hankov, N., Petersen, M.F., Petersen, C.C., Optogenetic stimulation of cortex to map evoked whisker movements in awake head-restrained mice. Neuroscience, 2017.
Hung, C., Ling, G., Mohanty, S., Chiao, J., An integrated microLED optrode for optogenetic stimulation and electrical recording. IEEE Trans. Biomed. Eng., 60, 2013, 225.
Montgomery, K.L., Yeh, A.J., Ho, J.S., Tsao, V., Iyer, S.M., Grosenick, L., et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods, 12, 2015, 969.
Park, S.I., Shin, G., McCall, J.G., Al-Hasani, R., Norris, A., Xia, L., et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl. Acad. Sci. U. S. A., 113, 2016, 8169.
Shin, G., Gomez, A.M., Al-Hasani, R., Jeong, Y.R., Kim, J., Xie, Z., et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93 (2017), 509–521.
Zhao, Y., Tang, L., Rennaker, R., Hutchens, C., Ibrahim, T.S., Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces. PLoS One, 11, 2013, e77759.
Lee, H., Kwon, K.Y., Li, W., Ghovanloo, M., A power-efficient switched-capacitor stimulating system for electrical/optical deep brain stimulation. IEEE J. Solid-State Circuits 50 (2015), 360–374.
Schwaerzle, M., Pothof, F., Paul, O., Ruther, P., High-resolution neural depth probe with integrated 460 NM light emitting diode for optogenetic applications. 18th International Conference on Solid-State Sensors, Actuators & Microsystems 18 (2015), 1774–1777.
Wentz, C.T., Bernstein, J.G., Monahan, P., Guerra, A., Rodriguez, A., Boyden, E.S., A wirelessly powered and controlled device for optical neural control of freely-behaving animals. J. Neural Eng., 8, 2011, 046021.
Rossi, Mark A., Go, Vinson, Murphy, Tracy, Fu, Quanhai, Morizio, James, Yin, Henry H., A wirelessly controlled implantable LED system for deep brain optogenetic stimulation. Front. Integr. Neurosci., 9, 2015.
Kale, R.P., Kouzani, A.Z., Walder, K., Berk, M., Tye, S.J., Evolution of optogenetic microdevices. Neurophotonics, 2, 2015, 031206.
Jegadeesan, R., Yong-Xin, G., Topology selection and efficiency improvement of inductive power links. IEEE Trans. Antennas Propag.(10), 2012, 4846.
Johnson, R.C., Jasik, H., Antenna Engineering Handbook. 1961, McGraw-Hill, New York, London.
Chen, H.-Y., Wang, H.-H., Current and SAR induced in a human head model by the electromagnetic fields irradiated from a cellular phone. IEEE Trans. Microw. Theory Techn. 42:12 (1994), 2249–2254.
Wong, R.C., Cloherty, S.L., Ibbotson, M.R., O'Brien, B.J., Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis. J. Neurophysiol. 108:no. 7 (2012), 2008–2023.
Cloherty, S.L., Wong, R.C., Hadjinicolaou, A.E., Meffin, H., Ibbotson, M.R., O'Brien, B.J., Epiretinal electrical stimulation and the inner limiting membrane in rat retina. Eng. Med. Biol. Soc., 2012.
Hamill, O.P., Marty, A., Neher, E., Sakmann, B., Sigworth, F.J., Improved Patch Clamp techniques for high Resolution current recording from cells and cell-free membrane patches. Eur. J. Physiol. 391 (1981), 85–100.
Hadjinicolaou, A., Savage, C., Apollo, N., Garrett, D., Cloherty, S., Ibbotson, M., O'Brien, B., Optimizing the electrical stimulation of retinal ganglion cells. IEEE Trans. Neural Syst. Rehabil. Eng., 2, 2014, 169.
Carcea, I., Insanally, M.N., Froemke, R.C., Dynamics of auditory cortical activity during behavioural engagement and auditory perception. Nat. Commun., 8, 2017, 14412.
Song, Y., Kim, J., Jeong, H., Choi, I., Jeong, D., Kim, K., Lee, S., A neural circuit for auditory dominance over visual perception. Neuron 93 (2017), 940–954.
Scharfetter, H., Casanas, R., Rosell, J., Biological tissue characterization by magnetic induction spectroscopy (MIS): requirements and limitations. IEEE Trans. Biomed. Eng. 50:7 (2003), 870–880.
Gabriel, S., Lau, R.W., Gabriel, C., The dielectric properties of biological tissues: II. measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41:11 (1996), 2251–2269.
Lichter, S.G., Escudié, M.C., Stacey, A.D., Ganesan, K., Fox, K., Ahnood, A., et al. Hermetic diamond capsules for biomedical implants enabled by gold active braze alloys. Biomaterials 53 (2015), 464–474.
Sikder, M.U., Fallon, J., Shivdasani, M.N., Ganesan, K., Seligman, P., Garrett, D.J., Wireless induction coils embedded in diamond for power transfer in medical implants. Biomed. Microdevices(4), 2017, 1.
Garrett, D.J., Saunders, A.L., McGowan, C., Specks, J., Ganesan, K., Meffin, H., et al. In vivo biocompatibility of boron doped and nitrogen included conductive-diamond for use in medical implants. J. Biomed. Mater. Res. Part B Appl. Biomater., 104(1), 2016, 19.
Grover, F.W., Inductance Calculations: Working Formulas and Tables. 1946, D. Van Nostrand, New York.
Rosa, E.B., Grover, F.W., Formulas and tables for the calculation of mutual and self inductance. J. Wash. Acad. Sci., 1911.
Saxena, T., Karumbaiah, L., Gaupp, E.A., Patkar, R., Patil, K., Betancur, M., et al. The impact of chronic blood–brain barrier breach on intracortical electrode function. Biomaterials 34 (2013), 4703–4713.
Karumbaiah, L., Saxena, T., Carlson, D., Patil, K., Patkar, R., Gaupp, E.A., et al. Relationship between intracortical electrode design and chronic recording function. Biomaterials 34 (2013), 8061–8074.
Ilfeld, B.M., Gabriel, R.A., Saulino, M.F., Chae, J., Peckham, P.H., Grant, S.A., et al. Infection rates of electrical leads used for percutaneous neurostimulation of the peripheral nervous system. Pain Pract. 17:6 (2017), 753–762.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.