Reference : A high resolution spetrum of comet C/2016 R2 (PanSTARRS) with the ESO VLT
Scientific congresses and symposiums : Paper published in a journal
Physical, chemical, mathematical & earth Sciences : Space science, astronomy & astrophysics
http://hdl.handle.net/2268/229319
A high resolution spetrum of comet C/2016 R2 (PanSTARRS) with the ESO VLT
English
Jehin, Emmanuel mailto [Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Origines Cosmologiques et Astrophysiques (OrCa) >]
Opitom, Cyrielle [> >]
Hutsemekers, Damien mailto [Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Astroph. extragalactique et observations spatiales (AEOS) >]
Rousselot, Philippe [> >]
José Pozuelos Romero, Francisco [> >]
Manfroid, Jean mailto [Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Département d'astrophys., géophysique et océanographie (AGO) >]
Moulane, Youssef [> >]
1-Oct-2018
Bulletin of the American Astronomical Society
American Astronomical Society
50
210.15
No
International
0002-7537
2330-9458
New York
NY
50th DPS Meeting
21-26 October 2018
Knoxville
USA
[en] comets ; solar system
[en] The returning long period comet C/2016 R2 (PanSTARRS) was discovered on September 7, 2016 at 6.3 au from the Sun. While it was already showing a 20" coma at this large distance (Weryk and Wainscoat 2016), it is only in December 2017 that it was found that this comet had a very unusual composition. From radio observations the comet appeared to be very rich in CO and very poor in HCN (Wierzchos and Womack 2018) and its optical spectrum was dominated by CO[SUP]+[/SUP] and more surprisingly N[SUB]2[/SUB][SUP]+[/SUP] emission bands (Cochran and McKay 2018), while most of the emission bands usually detected in the optical spectrum of comets were not detected. In order to investigate in detail its coma in the optical, we obtained a total of 6 hours of Director Discretionary Time on C/2016 R2 with UVES, the high resolution optical spectrograph of the ESO Very Large Telescope, between February 11 and 16, 2018. We used two different settings to optimally cover the whole optical spectrum (326-1060 nm) with a resolving power of 80.000. We report on those observations. We detect strong emissions of the ions CO[SUP]+[/SUP] and N[SUB]2[/SUB][SUP]+[/SUP], and also several CO[SUB]2[/SUB][SUP]+ [/SUP]bands, but no H[SUB]2[/SUB]O[SUP]+[/SUP] . We detect emission lines of the radicals CN, C[SUB]2[/SUB] and C[SUB]3[/SUB] but they are very weak. We computed from these spectra the N[SUB]2[/SUB][SUP]+[/SUP] / CO[SUP]+[/SUP] / CO[SUB]2[/SUB][SUP]+[/SUP] ratios in the coma of the comet which put some constraints on the comet formation models, and compared those values to other comets. The forbidden oxygen [OI] lines are detected, allowing to measure the ratio between the green line and the red doublet which provides a way to determine the abundance of CO and CO[SUB]2[/SUB] relative to H[SUB]2[/SUB]O. For the first time we report the detection of the nitrogen [NI] forbidden doublet at 5197.9 and 5200.2 Å in the coma of a comet, confirming the high abundance of nitrogen in this comet. Interestingly we also detect a line at 9850 Å which could be one of the carbon [CI] forbidden lines but we do not detect the other line of the doublet at 9823 Å. Because of the strong N[SUB]2[/SUB][SUP]+[/SUP] emissions, it was also a unique opportunity to measure the [SUP]14[/SUP]N/[SUP]15[/SUP]N isotopic ratio directly in N[SUB]2[/SUB], the main nitrogen reservoir in the solar nebula.
http://hdl.handle.net/2268/229319
http://adsabs.harvard.edu/abs/2018DPS....5021015J

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
2018DPS....5021015J.pdfPublisher postprint23.88 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.