Reference : Unsteady aerodynamic modeling methodology based on dynamic mode interpolation for tra...
Scientific journals : Article
Engineering, computing & technology : Aerospace & aeronautics engineering
http://hdl.handle.net/2268/229190
Unsteady aerodynamic modeling methodology based on dynamic mode interpolation for transonic flutter calculations
English
Güner, Hüseyin mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale >]
Thomas, David mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale >]
Dimitriadis, Grigorios mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale >]
Terrapon, Vincent mailto [Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents >]
In press
Journal of Fluids and Structures
Elsevier
Yes (verified by ORBi)
International
0889-9746
1095-8622
Atlanta
GE
[en] unsteady aerodynamics ; computational fluid dynamics ; dynamic mode decomposition ; transonic ; flutter ; aeroelasticity
[en] A new unsteady aerodynamic modeling methodology for calculating transonic flutter characteristics is presented. The main idea of the methodology is to obtain the unsteady flow response to small amplitude periodic deformations of a structure over a large range of oscillation frequencies through the interpolation of the most dominant fluid dynamic modes obtained from Dynamic Mode Decomposition (DMD) of a few reference unsteady simulations at different oscillation frequencies. These simulations can be carried out by solving the Euler or RANS equations. The methodology can then be used to obtain a frequency-domain generalized aerodynamic force matrix, and stability analysis can be performed using standard flutter analysis methods such as the p-k method. The proposed methodology provides a very good estimate of the flutter boundary for the 2D Isogai airfoil and 3D AGARD 445.6 wing models, but at a lower computational cost than the traditional higher-fidelity Fluid-Structure Interaction (FSI) simulations.
http://hdl.handle.net/2268/229190

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
guner2018unsteady.pdfAuthor preprint1.84 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.