[en] A new unsteady aerodynamic modeling methodology for calculating transonic flutter characteristics is presented. The main idea of the methodology is to obtain the unsteady flow response to small amplitude periodic deformations of a structure over a large range of oscillation frequencies through the interpolation of the most dominant fluid dynamic modes obtained from Dynamic Mode Decomposition (DMD) of a few reference unsteady simulations at different oscillation frequencies. These simulations can be carried out by solving the Euler or RANS equations. The methodology can then be used to obtain a frequency-domain generalized aerodynamic force matrix, and stability analysis can be performed using standard flutter analysis methods such as the p-k method. The proposed methodology provides a very good estimate of the flutter boundary for the 2D Isogai airfoil and 3D AGARD 445.6 wing models, but at a lower computational cost than the traditional higher-fidelity Fluid-Structure Interaction (FSI) simulations.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Güner, Hüseyin ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Thomas, David ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Dimitriadis, Grigorios ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Terrapon, Vincent ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Modélisation et contrôle des écoulements turbulents
Language :
English
Title :
Unsteady aerodynamic modeling methodology based on dynamic mode interpolation for transonic flutter calculations
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Albano, E., Rodden, W.P., A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J. 7:2 (1969), 279–285.
Allemang, R., Brown, D., 1982. A correlation coefficient for modal vector analysis. In: Proceedings of the 1st International Modal Analysis Conference, pp. 110–116.
Alonso, J., Jameson, A., 1994. Fully-implicit time-marching aeroelastic solutions. In: 32nd Aerospace Sciences Meeting and Exhibit, p. 56.
Amsallem, D., Farhat, C., Interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA J. 46:7 (2008), 1803–1813.
Batina, J.T., Efficient algorithm for solution of the unsteady transonic small-disturbance equation. J. Aircr. 25:7 (1988), 598–605.
Bendiksen, O.O., Review of unsteady transonic aerodynamics: theory and applications. Prog. Aerosp. Sci. 47:2 (2011), 135–167.
Dimitriadis, G., Introduction to Nonlinear Aeroelasticity. first ed., 2017, John Wiley & Sons.
Dimitriadis, G., Giannelis, N., Vio, G., A modal frequency-domain generalised force matrix for the unsteady Vortex Lattice method. J. Fluids Struct. 76 (2018), 216–228.
Dowell, E.H., Curtiss, H.C., Scanlan, R.H., Sisto, F., A Modern Course in Aeroelasticity. fifth ed., 2015, Springer.
Dowell, E.H., Hall, K.C., Romanowski, M.C., Eigenmode analysis in unsteady aerodynamics: Reduced order models. Appl. Mech. Rev. 50:6 (1997), 371–386.
Durbin, P.A., Reif, B.P., Statistical Theory and Modeling for Turbulent Flows. second ed., 2011, John Wiley & Sons.
Economon, T.D., Palacios, F., Copeland, S.R., Lukaczyk, T.W., Alonso, J.J., SU2: An open-source suite for multiphysics simulation and design. AIAA J. 54:3 (2015), 828–846.
Elizabeth, M.L., John, T.B., Calculation of AGARD Wing 445.6 Flutter Using Navier-Stokes Aerodynamics: NASA Langley Technical Report Server., 1993.
Hall, K.C., Thomas, J.P., Clark, W.S., Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA J. 40:5 (2002), 879–886.
Hall, K.C., Thomas, J.P., Dowell, E.H., Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA J. 38:10 (2000), 1853–1862.
Hassig, H.J., An approximate true damping solution of the flutter equation by determinant iteration. J. Aircr. 8:11 (1971), 885–889.
Hu, P., Bodson, M., Brenner, M., 2008. Towards real-time simulation of aeroservoelastic dynamics for a flight vehicle from subsonic to hypersonic regime. In: AIAA Atmospheric Flight Mechanics Conference and Exhibit, p. 6375.
Isogai, K., On the transonic-dip mechanism of flutter of a sweptback wing. AIAA J. 17:7 (1979), 793–795.
Kim, T., Hong, M., Bhatia, K.G., SenGupta, G., Aeroelastic model reduction for affordable computational fluid dynamics-based flutter analysis. AIAA J. 43:12 (2005), 2487–2495.
Lieu, T., Lesoinne, M., 2004. Parameter adaptation of reduced order models for three-dimensional flutter analysis, in: 42nd AIAA Aerospace Sciences Meeting and Exhibit, p. 888.
Liu, F., Cai, J., Zhu, Y., Tsai, H., F. Wong, A., Calculation of wing flutter by a coupled fluid-structure method. J. Aircr. 38:2 (2001), 334–342.
Lucia, D.J., Beran, P.S., Silva, W.A., Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40:1–2 (2004), 51–117.
Metafor, 2018. A Nonlinear Finite Element Code University of Liège. http://metafor.ltas.ulg.ac.be/. (Accessed 16 May 2018).
Nimmagadda, S., Economon, T.D., Alonso, J.J., Ilario da Silva, C.R., 2016. Robust uniform time sampling approach for the harmonic balance method. In: 46th AIAA Fluid Dynamics Conference, p. 3966.
Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A.K., Lukaczyk, T.W., Taylor, T.W., Alonso, J.J., Stanford University Unstructured (SU2): An open-source integrated computational environment for multi-physics simulation and design. AIAA Paper, 287, 2013.
Palacios, F., Economon, T.D., Aranake, A.C., Copeland, S.R., Lonkar, A.K., Lukaczyk, T.W., Manosalvas, D.E., Naik, K.R., Padrón, A.S., Tracey, B., et al. Stanford University Unstructured (SU2): Open-source analysis and design technology for turbulent flows. AIAA Paper 243 (2014), 13–17.
Rodden, W.P., Bellinger, E.D., Aerodynamic lag functions, divergence, and the British flutter method. J. Aircr. 19:7 (1982), 596–598.
Schmid, P.J., Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656 (2010), 5–28.
Shirk, M.H., Hertz, T.J., Weisshaar, T.A., Aeroelastic tailoring-theory, practice, and promise. J. Aircr. 23:1 (1986), 6–18.
Silva, W.A., Bartels, R.E., Development of reduced-order models for aeroelastic analysis and flutter prediction using the CFL3Dv6.0 code. J. Fluids Struct. 19:6 (2004), 729–745.
Thomas, D., Cerquaglia, M.L., Boman, R., Economon, T., Alonso, J., Dimitriadis, G., Terrapon, V., CUPyDO - An integrated Python environment for coupled fluid-structure simulations. Adv. Eng. Softw., 2018 (in press).
Thomas, J.P., Dowell, E.H., Hall, K.C., Three-dimensional transonic aeroelasticity using proper orthogonal decomposition-based reduced-order models. J. Aircr. 40:3 (2003), 544–551.
Thomas, J.P., Dowell, E.H., Hall, K.C., Static/dynamic correction approach for reduced-order modeling of unsteady aerodynamics. J. Aircr. 43:4 (2006), 865–878.
Timme, S., Badcock, K., Transonic aeroelastic instability searches using sampling and aerodynamic model hierarchy. AIAA J. 49:6 (2011), 1191–1201.
Vio, G.A., Dimitriadis, G., Cooper, J.E., Badcock, K.J., Woodgate, M.A., Rampurawala, A.M., Aeroelastic system identification using transonic CFD data for a wing/store configuration. Aerosp. Sci. Technol. 11:2 (2007), 146–154.
Yang, S., Zhang, Z., Liu, F., Luo, S., Tsai, H.M., Schuster, D., 2004. Time-domain aeroelastic simulation by a coupled Euler and integral boundary-layer method. In: 22nd Applied Aerodynamics Conference and Exhibit, p. 5377.
Yates, E.C., Land, N.S., Foughner, J.T., Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45 Sweptback Wing Planform in Air and in Freon-12 in the Langley Transonic Dynamics Tunnel. 1963, National Aeronautics and Space Administration.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.