Cenci, U.; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, Villeneuve d’Ascq Cedex, 59655, France
Qiu, H.; Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ 08901, United States
Pillonel, T.; Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, 1011, Switzerland
Cardol, Pierre ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Remacle, Claire ; Université de Liège - ULiège > Département des sciences de la vie > Génétique et physiologie des microalgues
Colleoni, C.; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, Villeneuve d’Ascq Cedex, 59655, France
Kadouche, D.; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, Villeneuve d’Ascq Cedex, 59655, France
Chabi, M.; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, Villeneuve d’Ascq Cedex, 59655, France
Greub, G.; Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, 1011, Switzerland
Bhattacharya, D.; Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, United States
Ball, S. G.; Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS-USTL, Université des Sciences et Technologies de Lille, Bâtiment C9, Cité Scientifique, Villeneuve d’Ascq Cedex, 59655, France
Language :
English
Title :
Host-pathogen biotic interactions shaped vitamin K metabolism in Archaeplastida
Nowicka, B. & Kruk, J. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta BBA - Bioenerg. 1797, 1587–1605 (2010)
Sharma, P., Teixeira de Mattos, M. J., Hellingwerf, K. J. & Bekker, M. On the function of the various quinone species in Escherichia coli: The role of DMK in the electron transfer chains of E. coli. FEBS J. 279, 3364–3373 (2012)
Li, W. Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases. Trends Biochem. Sci. 41, 356–370 (2016)
Reumann, S. Biosynthesis of Vitamin K1 (Phylloquinone) by Plant Peroxisomes and Its Integration into Signaling Molecule Synthesis Pathways. In Peroxisomes and their Key Role in Cellular Signaling and Metabolism (ed. del Río, L. A.) 69, 213–229 (Springer Netherlands, 2013)
Vos, M. et al. Vitamin K2 Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency. Science 336, 1306–1310 (2012)
Zhi, X.-Y. et al. The Futalosine Pathway Played an Important Role in Menaquinone Biosynthesis during Early ProkaryoteEvolution. Genome Biol. Evol. 6, 149–160 (2014)
Eugeni Piller, L. et al. Chloroplast lipid droplet type II NAD(P)H quinone oxidoreductase is essential for prenylquinone metabolism and vitamin K1 accumulation. Proc. Natl. Acad. Sci. 108, 14354–14359 (2011)
Gross, J., Meurer, J. & Bhattacharya, D. Evidence of a chimeric genome in the cyanobacterial ancestor of plastids. BMC Evol. Biol. 8, 117 (2008)
Yoon, H. S. et al. Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol. Biol. 6, 78 (2006)
Yoshida, E., Nakamura, A. & Watanabe, T. Reversed-phase HPLC determination of chlorophyll a’ and naphthoquinones in photosystem I of red algae: existence of two menaquinone-4 molecules in photosystem I of Cyanidium caldarium. Anal. Sci. Int. J. Jpn. Soc. Anal. Chem. 19, 1001–1005 (2003)
Ponce-Toledo, R. I. et al. An Early-Branching Freshwater Cyanobacterium at the Origin of Plastids. Curr. Biol. 27, 386–391 (2017)
Criscuolo, A. & Gribaldo, S. Large-Scale Phylogenomic Analyses Indicate a Deep Origin of Primary Plastids within Cyanobacteria. Mol. Biol. Evol. 28, 3019–3032 (2011)
Mimuro, M. et al. The secondary electron acceptor of photosystem I in Gloeobacter violaceus PCC 7421 is menaquinone-4 that is synthesized by a unique but unknown pathway. FEBS Lett. 579, 3493–3496 (2005)
Widhalm, J. R. et al. Phylloquinone (vitamin K1) biosynthesis in plants: two peroxisomal thioesterases of lactobacillales origin hydrolyze 1,4-dihydroxy-2-naphthoyl-coa: Plant DHNA-CoA thioesterases. Plant J. 71, 205–215 (2012)
Emonds-Alt, B., Coosemans, N., Gerards, T., Remacle, C. & Cardol, P. Isolation and characterization of mutants corresponding to the MENA, MENB, MENC and MENE enzymatic steps of 5′-monohydroxyphylloquinone biosynthesis in Chlamydomonas reinhardtii. Plant J, 10.1111/tpj.13352 (2016)
Taber, H. W., Dellers, E. A. & Lombardo, L. R. Menaquinone biosynthesis in Bacillus subtilis: isolation of men mutants and evidence for clustering of men genes. J. Bacteriol. 145, 321–327 (1981)
Huang, J. & Gogarten, J. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8, R99 (2007)
Moustafa, A., Reyes-Prieto, A. & Bhattacharya, D. Chlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions. PLoS ONE 3, e2205 (2008)
Becker, B., Hoef-Emden, K. & Melkonian, M. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol. Biol. 8, 203 (2008)
Collingro, A. et al. Unity in Variety–The Pan-Genome of the Chlamydiae. Mol. Biol. Evol. 28, 3253–3270 (2011)
Grieshaber, N. A., Fischer, E. R., Mead, D. J., Dooley, C. A. & Hackstadt, T. From The Cover: Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc. Natl. Acad. Sci. 101, 7451–7456 (2004)
Cordoba, E., Salmi, M. & Leon, P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J. Exp. Bot. 60, 2933–2943 (2009)
Cenci, U., Ducatez, M., Kadouche, D., Colleoni, C. & Ball, S. G. Was the Chlamydial Adaptative Strategy to Tryptophan Starvation an Early Determinant of Plastid Endosymbiosis? Front. Cell. Infect. Microbiol. 6 (2016)
Li, B., Lopes, J. S., Foster, P. G., Embley, T. M. & Cox, C. J. Compositional Biases among Synonymous Substitutions Cause Conflict between Gene and Protein Trees for Plastid Origins. Mol. Biol. Evol. 31, 1697–1709 (2014)
Ball, S. G. et al. Metabolic Effectors Secreted by Bacterial Pathogens: Essential Facilitators of Plastid Endosymbiosis? Plant Cell 25, 7–21 (2013)
Cenci, U. et al. Biotic Host–Pathogen Interactions As Major Drivers of Plastid Endosymbiosis. Trends Plant Sci., 10.1016/j.tplants.2016.12.007 (2017)
Dagan, T. et al. Genomes of Stigonematalean Cyanobacteria (Subsection V) and the Evolution of Oxygenic Photosynthesis from Prokaryotes to Plastids. Genome Biol. Evol. 5, 31–44 (2013)
Deschamps, P. Primary endosymbiosis: have cyanobacteria and Chlamydiae ever been roommates? Acta Soc. Bot. Pol. 83, 291–302 (2014)
Moreira, D. & Deschamps, P. What Was the Real Contribution of Endosymbionts to the Eukaryotic Nucleus? Insights from Photosynthetic Eukaryotes. Cold Spring Harb. Perspect. Biol. 6, a016014–a016014 (2014)
Domman, D., Horn, M., Embley, T. M. & Williams, T. A. Plastid establishment did not require a chlamydial partner. Nat. Commun. 6 (2015)
Qiu, H. et al. Assessing the bacterial contribution to the plastid proteome. Trends Plant Sci. 18, 680–687 (2013)
Ball, S. G., Bhattacharya, D., Qiu, H. & Weber, A. P. M. Commentary: Plastid establishment did not require a chlamydial partner. Front. Cell. Infect. Microbiol. 6 (2016)
Gehre, L. et al. Sequestration of host metabolism by an intracellular pathogen. Elife 5, e12552 (2016)
Bonner, C. A., Byrne, G. I. & Jensen, R. A. Chlamydia exploit the mammalian tryptophan-depletion defense strategy as a counter-defensive cue to trigger a survival state of persistence. Front. Cell. Infect. Microbiol. 4 (2014)
Ouellette, S. P. et al. Global transcriptional upregulation in the absence of increased translation in Chlamydia during IFN?-mediated host cell tryptophan starvation. Mol. Microbiol. 62, 1387–1401 (2006)
Wood, H., Roshick, C. & McClarty, G. Tryptophan recycling is responsible for the interferon-γ resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells: Tryptophan recycling in C. psittaci GPIC. Mol. Microbiol. 52, 903–916 (2004)
Lo, C.-C., Xie, G., Bonner, C. A. & Jensen, R. A. The AlternativeTranslational Profile That Underlies the Immune-Evasive State of Persistence in Chlamydiaceae Exploits Differential Tryptophan Contents of the Protein Repertoire. Microbiol. Mol. Biol. Rev. 76, 405–443 (2012)
Juul, N., Jensen, H., Hvid, M., Christiansen, G. & Birkelund, S. Characterization of In Vitro Chlamydial Cultures in Low-Oxygen Atmospheres. J. Bacteriol. 189, 6723–6726 (2007)
Dietz, I., Jerchel, S., Szaszák, M., Shima, K. & Rupp, J. When oxygen runs short: the microenvironment drives host–pathogen interactions. Microbes Infect. 14, 311–316 (2012)
Burns, J. A., Zhang, H., Hill, E., Kim, E. & Kerney, R. Transcriptome analysis illuminates the nature of the intracellular interaction in a vertebrate-algal symbiosis. eLife 6 (2017)
Hart, S. E., Schlarb-Ridley, B. G., Bendall, D. S. & Howe, C. J. Terminal oxidases of cyanobacteria. Biochem. Soc. Trans. 33, 832–835 (2005)
Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772–780 (2013)
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. Plos One 5, e9490 (2010)
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010)
Maruyama, S., Eveleigh, R. J. & Archibald, J. M. Treetrimmer: a method for phylogenetic dataset size reduction. BMC Res. Notes 6, 145 (2013)
Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009)
Lartillot, N. & Philippe, H. A Bayesian Mixture Model for Across-Site Heterogeneities in the Amino-Acid Replacement Process. Mol. Biol. Evol. 21, 1095–1109 (2004)
Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 32, 268–274 (2015)
Le, S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008)
Bhattacharya, D. et al. Genome of the red alga Porphyridium purpureum. Nat. Commun. 4 (2013)
Keeling, P., Burki, F., Wilcox, J. & Allam, B. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol 12, e1001889 (2014)
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006)
Qiu, H., Price, D. C., Yang, E. C., Yoon, H. S. & Bhattacharya, D. Evidence of ancient genome reduction in red algae (Rhodophyta). J. Phycol. 51, 624–636 (2015)
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)
Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009)
Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., von Haeseler, A. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017)
Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast Approximation for Phylogenetic Bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013)
Furuya, K., Hayashi, M. & Yabushita, Y. HPLC determination of phytoplankton pigments using N,N-dimethylformamide. J. Oceanogr. 54, 199–203 (1998)
Ozawa, S.-I., Kosugi, M., Kashino, Y., Sugimura, T. & Takahashi, Y. 5′-Monohydroxyphylloquinone is the Dominant Naphthoquinone of PSI in the Green Alga Chlamydomonas reinhardtii. Plant Cell Physiol. 53, 237–243 (2012)
Johnson, T. W. et al. Recruitment of a Foreign Quinone into the A1 Site of Photosystem I: In Vivo Replacement Of Plastoquinone-9 By Media-Supplemented Naphthoquinones In Phylloquinone Biosynthetic Pathway Mutants Of Synechocystis sp. PCC 6803. J. Biol. Chem. 276, 39512–39521 (2001)