[en] Well-compacted and crack-free TiO2 multilayer coatings have been manufactured from a colloidal approach based on the preparation of particulate suspensions for DSSC. The study of the suspension parameters to optimize dispersion and stabilization of the TiO2 nanoparticle in the liquid media as well as a thermal stabilization step between the layers have been defined as two key points in the processing method to obtain interconnected microstructures, free of defects and heterogeneities, that prevent the application of an additional scattering layer or any kind of specific or clean conditions during deposition. The sintering process at low temperature, 450⁰C, has allowed obtaining open microarchitectures avoiding the complete densification and favoring the dye adsorption. A thickness of 12.8 μm resulted in a successful dye loading of 4.52×10−10 mol·mm−2 and a photoefficiency of 5.7%, both in the range of the others particulate systems. EIS measurements were also made to study the transfer charge phenomena.
Disciplines :
Chemistry
Author, co-author :
González, Zoilo; Instituto de Cerámica y Vidrio, CSIC, Madrid
Yus, Joaquin; Instituto de Cerámica y Vidrio, CSIC, Madrid
Sanchez-Herencia, Antonio Javier; Instituto de Cerámica y Vidrio, CSIC, Madrid
Dewalque, Jennifer ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Manceriu, Laura ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Henrist, Catherine ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Ferrari, Begoña; Instituto de Cerámica y Vidrio, CSIC, Madrid
Language :
English
Title :
A colloidal approach to prepare binder and crack-free TiO2 multilayer coatings from particulate suspensions: application in DSSCs
Gong, J., Sumathy, K., Qiao, Q., Zhou, Z., Review on dye-sensitized solar cells (DSSCs): advanced techniques and research trends. Renew. Sustain. Energy Rev. 68 (2017), 234–246.
Mozaffari, S., Nateghi, M.R., Zarandi, M.B., An overview of the Challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 71 (2017), 675–686.
Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., Pettersson, H., Dye-sensitized solar cells. Chem. Rev. 110 (2010), 6595–6663.
O'Regan, B., Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353 (1991), 737–740.
Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., et al. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 18 (2015), 155–162.
Kinadjian, N., Le Bechec, M., Henrist, C., Prouzet, E., Lacombe, S., Backov, R., Varying TiO2 macroscopic fiber morphologies toward tuning their photocatalytic properties. ACS Appl. Mater. Interfaces 6 (2014), 11211–11218.
Banerjee, S., Pillai, S.C., Falaras, P., O'Shea, K.E., Byrne, J.A., Dionysiou, D.D., New insights into the mechanism of visible light photocatalysis. J. Phys. Chem. Lett. 5 (2014), 2543–2554.
Taleb, A., Mesguich, F., Hérissan, A., Colbeau-Justin, C., Yanpeng, X., Dubot, P., Optimized TiO2 nanoparticle packing for DSSC photovoltaic applications. Sol. Energy Mater. Sol. Cells 148 (2016), 52–59.
Ahmadi, S., Asim, N., Alghoul, M.A., Hammadi, F.Y., Saeedfar, K., Ludin, N.A., et al. The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. Int. J. Photoenergy, 2014, 2014.
Sanchez, C., Boissière, C., Grosso, D., Laberty, C., Nicole, L., Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem. Mater. 20 (2008), 682–737.
Dewalque, J., Cloots, R., Mathis, F., Dubreuil, O., Krins, N., Henrist, C., TiO2 multilayer thick films (up to 4 m) with ordered mesoporosity: Influence of template on the film mesostructure and use as high efficiency photoelectrode in DSSCs. J. Mater. Chem. 21 (2011), 7356–7363.
Keshavarzi, R., Mirkhani, V., Moghadam, M., Tangestaninejad, S., Mohammadpoor-Baltork, I., Highly efficient dye sensitized solar cells based on ordered and disordered mesoporous titania thick templated films. J. Mater. Chem. A 3 (2015), 2294–2304.
Zhang, H., Wang, W., Liu, H., Wang, R., Chen, Y., Wang, Z., Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination. Mater. Res. Bull. 49 (2014), 126–131.
Kao, M.C., Chen, H.Z., Young, S.L., Kung, C.Y., Lin, C.C., The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells. Thin Solid Films 517 (2009), 5096–5099.
Keshavarzi, R., Jamshidvand, A., Mirkhani, V., Tangestaninejad, S., Moghadam, M., Mohammadpoor-Baltork, I., The effect of the number of calcination steps on preparing crack free titania thick templated films for use in dye sensitized solar cells. Mater. Sci. Semicond. Process. 73 (2018), 99–105.
Sengupta, D., Das, P., Mondal, B., Mukherjee, K., Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application - a review. Renew. Sustain. Energy Rev. 60 (2016), 356–376.
Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Péchy, P., et al. Fabrication of screen-printing pastes from TiO2 powders for dye-sensitised solar cells. Prog. Photovoltaics Res. Appl. 15 (2007), 603–612.
Fan, K., Gong, C., Peng, T., Chen, J., Xia, J., A novel preparation of small TiO2 nanoparticle and its application to dye-sensitized solar cells with binder-free paste at low temperature. Nanoscale 3 (2011), 3900–3906.
Liu, T.-C., Wu, C.-C., Huang, C.-H., Chen, C.-M., Effects of ethyl cellulose on performance of titania photoanode for dye-sensitized solar cells. J. Korean Inst. Electr. Electron. Mater. Eng. 45 (2016), 6192–6199.
Pan, M., Huang, N., Zhao, X., Fu, J., Zhong, X., Enhanced efficiency of dye-sensitized solar cell by high surface area anatase-TiO2-modified P25 paste. J. Nanomater., 2013, 2013.
Deckers, J., Vleugels, J., Kruth, J.-P., Additive manufacturing of ceramics: a review. J. Ceram. Sci. Technol. 5 (2014), 245–260.
Gonzalez, Z., Yus, J., Caballero, A., Morales, J., Sanchez-Herencia, A.J., Ferrari, B., Electrochemical performance of pseudo-capacitor electrodes fabricated by Electrophoretic Deposition inducing Ni(OH)2 nanoplatelets agglomeration by Layer-by-Layer. Electrochim. Acta 247 (2017), 333–343.
Gonzalez, Z., Filiatre, C., Buron, C.C., Sanchez-Herencia, A.J., Ferrari, B., Electrophoretic deposition of Ni(OH)2 nanoplatelets modified by polyelectrolyte multilayers: study of the coatings formation in a laminar flow cell. J. Electrochem. Soc. 164 (2017), D436–D444.
Di Paola, A., Bellardita, M., Palmisano, L., Barbieriková Z., Brezová V., Influence of crystallinity and OH surface density on the photocatalytic activity of TiO2 powders. J. Photochem. Photobiol. A: Chem. 273 (2014), 59–67.
Dewalque, J., Cloots, R., Dubreuil, O., Krins, N., Vertruyen, B., Henrist, C., Microstructural evolution of a TiO2 mesoporous single layer film under calcination: effect of stabilization and repeated thermal treatments on the film crystallization and surface area. Thin Solid Films 520 (2012), 5272–5276.
Procházka, J., Kavan, L., Shklover, V., Zukalová M., Frank, O., Kalbáč M., et al. Multilayer films from templated TiO2 and structural changes during their thermal treatment. Chem. Mater. 20 (2008), 2985–2993.
Phadke, S., Du Pasquier, A., Birnie, D.P., Enhanced Electron transport through template-derived pore channels in dye-sensitized solar cells. J. Phys. Chem. C 115 (2011), 18342–18347.
Hsu, C.-P., Lee, K.-M., Huang, J.T.-W., Lin, C.-Y., Lee, C.-H., Wang, L.-P., et al. EIS analysis on low temperature fabrication of TiO2 porous films for dye-sensitized solar cells. Electrochim. Acta 53 (2008), 7514–7522.
Huang, J., Zhu, J., Cheng, K., Xu, Y., Cao, D., Wang, G., Preparation of Co3O4 nanowires grown on nickel foam with superior electrochemical capacitance. Electrochim. Acta 75 (2012), 273–278.