de Lima Procopio, R. E.; da Silva, I. R.; Martins, M. K.; de Azevedo, J. L.; de Araujo, J. M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16 (5), 466-71, 10.1016/j.bjid.2012.08.014
Berdy, J. Bioactive microbial metabolites. J. Antibiot. 2005, 58 (1), 1-26, 10.1038/ja.2005.1
Loria, R.; Bignell, D. R.; Moll, S.; Huguet-Tapia, J. C.; Joshi, M. V.; Johnson, E. G.; Seipke, R. F.; Gibson, D. M. Thaxtomin biosynthesis: the path to plant pathogenicity in the genus Streptomyces. Antonie van Leeuwenhoek 2008, 94 (1), 3-10, 10.1007/s10482-008-9240-4
King, R. R.; Calhoun, L. A. The thaxtomin phytotoxins: sources, synthesis, biosynthesis, biotransformation and biological activity. Phytochemistry 2009, 70 (7), 833-41, 10.1016/j.phytochem.2009.04.013
Barry, S. M.; Kers, J. A.; Johnson, E. G.; Song, L.; Aston, P. R.; Patel, B.; Krasnoff, S. B.; Crane, B. R.; Gibson, D. M.; Loria, R.; Challis, G. L. Cytochrome P450-catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat. Chem. Biol. 2012, 8 (10), 814-6, 10.1038/nchembio.1048
Huguet-Tapia, J. C.; Badger, J. H.; Loria, R.; Pettis, G. S. Streptomyces turgidiscabies Car8 contains a modular pathogenicity island that shares virulence genes with other actinobacterial plant pathogens. Plasmid 2011, 65 (2), 118-24, 10.1016/j.plasmid.2010.11.002
Zhang, Y.; Bignell, D. R.; Zuo, R.; Fan, Q.; Huguet-Tapia, J. C.; Ding, Y.; Loria, R. Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic Streptomyces spp. Mol. Plant-Microbe Interact. 2016, 29 (8), 640-50, 10.1094/MPMI-04-16-0068-R
Bignell, D. R.; Huguet-Tapia, J. C.; Joshi, M. V.; Pettis, G. S.; Loria, R. What does it take to be a plant pathogen: genomic insights from Streptomyces species. Antonie van Leeuwenhoek 2010, 98 (2), 179-94, 10.1007/s10482-010-9429-1
Zhang, Y.; Loria, R. Emergence of Novel Pathogenic Streptomyces Species by Site-Specific Accretion and cis-Mobilization of Pathogenicity Islands. Mol. Plant-Microbe Interact. 2017, 30 (1), 72-82, 10.1094/MPMI-09-16-0190-R
Wach, M. J.; Krasnoff, S. B.; Loria, R.; Gibson, D. M. Effect of carbohydrates on the production of thaxtomin A by Streptomyces acidiscabies. Arch. Microbiol. 2007, 188 (1), 81-8, 10.1007/s00203-007-0225-x
Lerat, S.; Simao-Beaunoir, A. M.; Wu, R.; Beaudoin, N.; Beaulieu, C. Involvement of the plant polymer suberin and the disaccharide cellobiose in triggering thaxtomin A biosynthesis, a phytotoxin produced by the pathogenic agent Streptomyces scabies. Phytopathology 2010, 100 (1), 91-6, 10.1094/PHYTO-100-1-0091
Johnson, E. G.; Joshi, M. V.; Gibson, D. M.; Loria, R. Cello-oligosaccharides released from host plants induce pathogenicity in scab-causing Streptomyces species. Physiol. Mol. Plant Pathol. 2007, 71 (1), 18-25, 10.1016/j.pmpp.2007.09.003
Jourdan, S.; Francis, I. M.; Kim, M. J.; Salazar, J. J.; Planckaert, S.; Frere, J.M.; Matagne, A.; Kerff, F.; Devreese, B.; Loria, R.; Rigali, S. The CebE/MsiK transporter is a doorway to the cello-oligosaccharide-mediated induction of Streptomyces scabies pathogenicity. Sci. Rep. 2016, 6, 27144, 10.1038/srep27144
Francis, I. M.; Jourdan, S.; Fanara, S.; Loria, R.; Rigali, S. The cellobiose sensor CebR is the gatekeeper of Streptomyces scabies pathogenicity. mBio 2015, 6 (2), e02018, 10.1128/mBio.02018-14
Joshi, M. V.; Bignell, D. R.; Johnson, E. G.; Sparks, J. P.; Gibson, D. M.; Loria, R. The AraC/XylS regulator TxtR modulates thaxtomin biosynthesis and virulence in Streptomyces scabies. Mol. Microbiol. 2007, 66 (3), 633-42, 10.1111/j.1365-2958.2007.05942.x
Jourdan, S.; Francis, I. M.; Deflandre, B.; Tenconi, E.; Riley, J.; Planckaert, S.; Tocquin, P.; Martinet, L.; Devreese, B.; Loria, R.; Rigali, S. Contribution of the beta-glucosidase BglC to the onset of the pathogenic lifestyle of Streptomyces scabies. Mol. Plant Pathol. 2018, 19 (6), 1480-1490, 10.1111/mpp.12631
Padilla-Reynaud, R.; Simao-Beaunoir, A. M.; Lerat, S.; Bernards, M. A.; Beaulieu, C. Suberin regulates the production of cellulolytic enzymes in Streptomyces scabiei, the causal agent of potato common scab. Microbes Environ 2015, 30 (3), 245-53, 10.1264/jsme2.ME15034
Joshi, M. V.; Mann, S. G.; Antelmann, H.; Widdick, D. A.; Fyans, J. K.; Chandra, G.; Hutchings, M. I.; Toth, I.; Hecker, M.; Loria, R.; Palmer, T. The twin arginine protein transport pathway exports multiple virulence proteins in the plant pathogen Streptomyces scabies. Mol. Microbiol. 2010, 77 (1), 252-71, 10.1111/j.1365-2958.2010.07206.x
Komeil, D.; Padilla-Reynaud, R.; Lerat, S.; Simao-Beaunoir, A. M.; Beaulieu, C. Comparative secretome analysis of Streptomyces scabiei during growth in the presence or absence of potato suberin. Proteome Sci. 2014, 12, 35, 10.1186/1477-5956-12-35
Lauzier, A.; Simao-Beaunoir, A. M.; Bourassa, S.; Poirier, G. G.; Talbot, B.; Beaulieu, C. Effect of potato suberin on Streptomyces scabies proteome. Mol. Plant Pathol. 2008, 9 (6), 753-62, 10.1111/j.1364-3703.2008.00493.x
Loria, R.; Bukhalid, R. A.; Creath, R. A.; Leiner, R. H.; Olivier, M.; Steffens, J. C. Differential production of thaxtomins by pathogenic Streptomyces species in vitro. Phytopathology 1996, 85, 537-541, 10.1094/Phyto-85-537
Vizcaino, J. A.; Csordas, A.; del-Toro, N.; Dianes, J. A.; Griss, J.; Lavidas, I.; Mayer, G.; Perez-Riverol, Y.; Reisinger, F.; Ternent, T.; Xu, Q. W.; Wang, R.; Hermjakob, H. update of the PRIDE database and its related tools. Nucleic Acids Res. 2016, 44 (D1), D447-56, 10.1093/nar/gkv1145
MacLean, B.; Tomazela, D. M.; Shulman, N.; Chambers, M.; Finney, G. L.; Frewen, B.; Kern, R.; Tabb, D. L.; Liebler, D. C.; MacCoss, M. J. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26 (7), 966-8, 10.1093/bioinformatics/btq054
Mesuere, B.; Van der Jeugt, F.; Devreese, B.; Vandamme, P.; Dawyndt, P. The unique peptidome: Taxon-specific tryptic peptides as biomarkers for targeted metaproteomics. Proteomics 2016, 16 (17), 2313-8, 10.1002/pmic.201600023
Desiere, F.; Deutsch, E. W.; King, N. L.; Nesvizhskii, A. I.; Mallick, P.; Eng, J.; Chen, S.; Eddes, J.; Loevenich, S. N.; Aebersold, R. The PeptideAtlas project. Nucleic acids research 2006, 34 (Database), D655-8
Yang, J.; Tauschek, M.; Robins-Browne, R. M. Control of bacterial virulence by AraC-like regulators that respond to chemical signals. Trends Microbiol. 2011, 19 (3), 128-35, 10.1016/j.tim.2010.12.001
Jourdan, S.; Francis, I. M.; Deflandre, B.; Loria, R.; Rigali, S. Tracking the subtle mutations driving host sensing by the plant pathogen Streptomyces scabies. mSphere 2017, 2 (2), e00367-16, 10.1128/mSphere.00367-16
Kwakman, J. H.; Postma, P. W. Glucose kinase has a regulatory role in carbon catabolite repression in Streptomyces coelicolor. J. Bacteriol. 1994, 176 (9), 2694-8, 10.1128/jb.176.9.2694-2698.1994
van Wezel, G. P.; White, J.; Young, P.; Postma, P. W.; Bibb, M. J. Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol. Microbiol. 1997, 23 (3), 537-49, 10.1046/j.1365-2958.1997.d01-1878.x
Schlosser, A.; Weber, A.; Schrempf, H. Synthesis of the Streptomyces lividans maltodextrin ABC transporter depends on the presence of the regulator MalR. FEMS Microbiol. Lett. 2001, 196 (1), 77-83, 10.1016/S0378-1097(00)00566-8
Hurtubise, Y.; Shareck, F.; Kluepfel, D.; Morosoli, R. A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins. Mol. Microbiol. 1995, 17 (2), 367-77, 10.1111/j.1365-2958.1995.mmi-17020367.x
Schlosser, A.; Kampers, T.; Schrempf, H. The Streptomyces ATP-binding component MsiK assists in cellobiose and maltose transport. J. Bacteriol. 1997, 179 (6), 2092-5, 10.1128/jb.179.6.2092-2095.1997
Nothaft, H.; Dresel, D.; Willimek, A.; Mahr, K.; Niederweis, M.; Titgemeyer, F. The phosphotransferase system of Streptomyces coelicolor is biased for N-acetylglucosamine metabolism. Journal of bacteriology 2003, 185 (23), 7019-23, 10.1128/JB.185.23.7019-7023.2003
Nothaft, H.; Rigali, S.; Boomsma, B.; Swiatek, M.; McDowall, K. J.; van Wezel, G. P.; Titgemeyer, F. The permease gene nagE2 is the key to N-acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi-level control. Mol. Microbiol. 2010, 75 (5), 1133-44, 10.1111/j.1365-2958.2009.07020.x
Nothaft, H.; Parche, S.; Kamionka, A.; Titgemeyer, F. In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. Journal of bacteriology 2003, 185 (3), 929-37, 10.1128/JB.185.3.929-937.2003
Rigali, S.; Nothaft, H.; Noens, E. E.; Schlicht, M.; Colson, S.; Muller, M.; Joris, B.; Koerten, H. K.; Hopwood, D. A.; Titgemeyer, F.; van Wezel, G. P. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 2006, 61 (5), 1237-51, 10.1111/j.1365-2958.2006.05319.x
Lambert, S.; Traxler, M. F.; Craig, M.; Maciejewska, M.; Ongena, M.; van Wezel, G. P.; Kolter, R.; Rigali, S. Altered desferrioxamine-mediated iron utilization is a common trait of bald mutants of Streptomyces coelicolor. Metallomics: integrated biometal science 2014, 6 (8), 1390-9, 10.1039/C4MT00068D
Legault, G. S.; Lerat, S.; Nicolas, P.; Beaulieu, C. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 2011, 101 (9), 1045-51, 10.1094/PHYTO-03-11-0064
Johnson, E. G.; Krasnoff, S. B.; Bignell, D. R.; Chung, W. C.; Tao, T.; Parry, R. J.; Loria, R.; Gibson, D. M. 4-Nitrotryptophan is a substrate for the non-ribosomal peptide synthetase TxtB in the thaxtomin A biosynthetic pathway. Mol. Microbiol. 2009, 73 (3), 409-18, 10.1111/j.1365-2958.2009.06780.x
Spaepen, S.; Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harbor Perspect. Biol. 2011, 3 (4), a001438, 10.1101/cshperspect.a001438
Zummo, F. P.; Marineo, S.; Pace, A.; Civiletti, F.; Giardina, A.; Puglia, A. M. Tryptophan catabolism via kynurenine production in Streptomyces coelicolor: identification of three genes coding for the enzymes of tryptophan to anthranilate pathway. Appl. Microbiol. Biotechnol. 2012, 94 (3), 719-28, 10.1007/s00253-011-3833-y
Kim, D. J.; Huh, J. H.; Yang, Y. Y.; Kang, C. M.; Lee, I. H.; Hyun, C. G.; Hong, S. K.; Suh, J. W. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in Streptomyces lividans TK23. Journal of bacteriology 2003, 185 (2), 592-600, 10.1128/JB.185.2.592-600.2003
Pang, A. P.; Du, L.; Lin, C. Y.; Qiao, J.; Zhao, G. R. Co-overexpression of lmbW and metK led to increased lincomycin A production and decreased byproduct lincomycin B content in an industrial strain of Streptomyces lincolnensis. J. Appl. Microbiol. 2015, 119 (4), 1064-74, 10.1111/jam.12919
Jin, Y. Y.; Cheng, J.; Yang, S. H.; Meng, L.; Palaniyandi, S. A.; Zhao, X. Q.; Suh, J. W. S-adenosyl-L-methionine activates actinorhodin biosynthesis by increasing autophosphorylation of the Ser/Thr protein kinase AfsK in Streptomyces coelicolor A3(2). Biosci., Biotechnol., Biochem. 2011, 75 (5), 910-3, 10.1271/bbb.100873
Zhao, X.; Wang, Q.; Guo, W.; Cai, Y.; Wang, C.; Wang, S.; Xiang, S.; Song, Y. Overexpression of metK shows different effects on avermectin production in various Streptomyces avermitilis strains. World J. Microbiol. Biotechnol. 2013, 29 (10), 1869-75, 10.1007/s11274-013-1350-0
Butler, A. R.; Gandecha, A. R.; Cundliffe, E. Influence of ancillary genes, encoding aspects of methionine metabolism, on tylosin biosynthesis in Streptomyces fradiae. J. Antibiot. 2001, 54 (8), 642-9, 10.7164/antibiotics.54.642
Franza, T.; Expert, D. Role of iron homeostasis in the virulence of phytopathogenic bacteria: an 'a la carte' menu. Mol. Plant Pathol. 2013, 14 (4), 429-38, 10.1111/mpp.12007
Ratledge, C.; Dover, L. G. Iron metabolism in pathogenic bacteria. Annu. Rev. Microbiol. 2000, 54, 881-941, 10.1146/annurev.micro.54.1.881
Chu, B. C.; Garcia-Herrero, A.; Johanson, T. H.; Krewulak, K. D.; Lau, C. K.; Peacock, R. S.; Slavinskaya, Z.; Vogel, H. J. Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view. BioMetals 2010, 23 (4), 601-11, 10.1007/s10534-010-9361-x
Arias, A. A.; Lambert, S.; Martinet, L.; Adam, D.; Tenconi, E.; Hayette, M.-P.; Ongena, M.; Rigali, S. Growth of desferrioxamine-deficient Streptomyces mutants through xenosiderophore piracy of airborne fungal contaminations. FEMS microbiology ecology 2015, 91 (7), fiv080, 10.1093/femsec/fiv080
Patel, P.; Song, L.; Challis, G. L. Distinct extracytoplasmic siderophore binding proteins recognize ferrioxamines and ferricoelichelin in Streptomyces coelicolor A3(2). Biochemistry 2010, 49 (37), 8033-42, 10.1021/bi100451k
Tierrafria, V. H.; Ramos-Aboites, H. E.; Gosset, G.; Barona-Gomez, F. Disruption of the siderophore-binding desE receptor gene in Streptomyces coelicolor A3(2) results in impaired growth in spite of multiple iron-siderophore transport systems. Microb. Biotechnol. 2011, 4 (2), 275-85, 10.1111/j.1751-7915.2010.00240.x
Craig, M.; Lambert, S.; Jourdan, S.; Tenconi, E.; Colson, S.; Maciejewska, M.; Ongena, M.; Martin, J. F.; van Wezel, G.; Rigali, S. Unsuspected control of siderophore production by N-acetylglucosamine in Streptomycetes. Environ. Microbiol. Rep. 2012, 4 (5), 512-21, 10.1111/j.1758-2229.2012.00354.x
Traxler, M. F.; Watrous, J. D.; Alexandrov, T.; Dorrestein, P. C.; Kolter, R. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 2013, 4 (4), e00459-13, 10.1128/mBio.00459-13
Yamanaka, K.; Oikawa, H.; Ogawa, H. O.; Hosono, K.; Shinmachi, F.; Takano, H.; Sakuda, S.; Beppu, T.; Ueda, K. Desferrioxamine E produced by Streptomyces griseus stimulates growth and development of Streptomyces tanashiensis. Microbiology 2005, 151 (9), 2899-905, 10.1099/mic.0.28139-0
Tunca, S.; Barreiro, C.; Coque, J. J.; Martin, J. F. Two overlapping antiparallel genes encoding the iron regulator DmdR1 and the Adm proteins control siderophore and antibiotic biosynthesis in Streptomyces coelicolor A3(2). FEBS J. 2009, 276 (17), 4814-27, 10.1111/j.1742-4658.2009.07182.x
Seipke, R. F.; Song, L.; Bicz, J.; Laskaris, P.; Yaxley, A. M.; Challis, G. L.; Loria, R. The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology 2011, 157 (9), 2681-93, 10.1099/mic.0.047977-0
Guerinot, M. L. Microbial iron transport. Annu. Rev. Microbiol. 1994, 48, 743-72, 10.1146/annurev.mi.48.100194.003523
Cornelis, P.; Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 2013, 3, 75, 10.3389/fcimb.2013.00075
Takase, H.; Nitanai, H.; Hoshino, K.; Otani, T. Requirement of the Pseudomonas aeruginosa tonB gene for high-affinity iron acquisition and infection. Infect. Immun. 2000, 68 (8), 4498-504, 10.1128/IAI.68.8.4498-4504.2000
Yaxley, A. M. Study of the Complete Genome Sequence of Streptomyces scabies (or scabiei) 87.22. PhD dissertation, University of Warwick, 2009.
Kinashi, H.; Someno, K.; Sakaguchi, K. Isolation and Characterization of Concanamycin-a, Concanamycin-B and Concanamycin-C. J. Antibiot. 1984, 37 (11), 1333-1343, 10.7164/antibiotics.37.1333
Seki-Asano, M.; Okazaki, T.; Yamagishi, M.; Sakai, N.; Hanada, K.; Mizoue, K. Isolation and characterization of new 18-membered macrolides FD-891 and FD-892. J. Antibiot. 1994, 47 (11), 1226-33, 10.7164/antibiotics.47.1226
Natsume, M.; Tashiro, N.; Doi, A.; Nishi, Y.; Kawaide, H. Effects of concanamycins produced by Streptomyces scabies on lesion type of common scab of potato. J. Gen. Plant Pathol. 2017, 83 (2), 78-82, 10.1007/s10327-017-0696-9
Bignell, D. R.; Seipke, R. F.; Huguet-Tapia, J. C.; Chambers, A. H.; Parry, R. J.; Loria, R. Streptomyces scabies 87-22 contains a coronafacic acid-like biosynthetic cluster that contributes to plant-microbe interactions. Mol. Plant-Microbe Interact. 2010, 23 (2), 161-75, 10.1094/MPMI-23-2-0161
Bown, L.; Altowairish, M. S.; Fyans, J. K.; Bignell, D. R. Production of the Streptomyces scabies coronafacoyl phytotoxins involves a novel biosynthetic pathway with an F -dependent oxidoreductase and a short-chain dehydrogenase/reductase. Mol. Microbiol. 2016, 101, 122, 10.1111/mmi.13378
Cheng, Z.; Bown, L.; Tahlan, K.; Bignell, D. R. Regulation of coronafacoyl phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab pathogen Streptomyces scabies. PLoS One 2015, 10 (3), e0122450, 10.1371/journal.pone.0122450
Fyans, J. K.; Altowairish, M. S.; Li, Y.; Bignell, D. R. Characterization of the Coronatine-Like Phytotoxins Produced by the Common Scab Pathogen Streptomyces scabies. Mol. Plant-Microbe Interact. 2015, 28 (4), 443-454, 10.1094/MPMI-09-14-0255-R
Hempel, A. M.; Cantlay, S.; Molle, V.; Wang, S. B.; Naldrett, M. J.; Parker, J. L.; Richards, D. M.; Jung, Y. G.; Buttner, M. J.; Flardh, K. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. Proc. Natl. Acad. Sci. U. S. A. 2012, 109 (35), E2371-9, 10.1073/pnas.1207409109
Hiard, S.; Marée, R.; Colson, S.; Hoskisson, P. A.; Titgemeyer, F.; van Wezel, G. P.; Joris, B.; Wehenkel, L.; Sébastien, R. PREDetector: a new tool to identify regulatory elements in bacterial genomes. Biochem. Biophys. Res. Commun. 2007, 357, 861-864, 10.1016/j.bbrc.2007.03.180
Nodwell, J. R.; McGovern, K.; Losick, R. An oligopeptide permease responsible for the import of an extracellular signal governing aerial mycelium formation in Streptomyces coelicolor. Mol. Microbiol. 1996, 22 (5), 881-93, 10.1046/j.1365-2958.1996.01540.x
Umeyama, T.; Lee, P. C.; Horinouchi, S. Protein serine/threonine kinases in signal transduction for secondary metabolism and morphogenesis in Streptomyces. Appl. Microbiol. Biotechnol. 2002, 59 (4-5), 419-25, 10.1007/s00253-002-1045-1
Park, H. S.; Shin, S. K.; Yang, Y. Y.; Kwon, H. J.; Suh, J. W. Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol. Lett. 2005, 249 (2), 199-206, 10.1016/j.femsle.2005.05.047
Bibb, M. J.; Domonkos, A.; Chandra, G.; Buttner, M. J. Expression of the chaplin and rodlin hydrophobic sheath proteins in Streptomyces venezuelae is controlled by sigma(BldN) and a cognate anti-sigma factor, RsbN. Mol. Microbiol. 2012, 84 (6), 1033-49, 10.1111/j.1365-2958.2012.08070.x
Bibb, M. J.; Molle, V.; Buttner, M. J. sigma(BldN), an extracytoplasmic function RNA polymerase sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J. Bacteriol. 2000, 182 (16), 4606-16, 10.1128/JB.182.16.4606-4616.2000
Traxler, M. F.; Seyedsayamdost, M. R.; Clardy, J.; Kolter, R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 2012, 86 (3), 628-44, 10.1111/mmi.12008
Bignell, D. R.; Francis, I. M.; Fyans, J. K.; Loria, R. Thaxtomin A production and virulence are controlled by several bld gene global regulators in Streptomyces scabies. Mol. Plant-Microbe Interact. 2014, 27 (8), 875-85, 10.1094/MPMI-02-14-0037-R
Chang, H. M.; Chen, M. Y.; Shieh, Y. T.; Bibb, M. J.; Chen, C. W. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol. Microbiol. 1996, 21 (5), 1075-85
Zhang, L.; Li, W. C.; Zhao, C. H.; Chater, K. F.; Tao, M. F. NsdB, a TPR-like-domain-containing protein negatively affecting production of antibiotics in Streptomyces coelicolor A3 (2). Acta Microbiol. Sin. 2007, 47 (5), 849-54
Yang, Y. H.; Song, E.; Kim, J. N.; Lee, B. R.; Kim, E. J.; Park, S. H.; Kim, W. S.; Park, H. Y.; Jeon, J. M.; Rajesh, T.; Kim, Y. G.; Kim, B. G. Characterization of a new ScbR-like gamma-butyrolactone binding regulator (SlbR) in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 2012, 96 (1), 113-21, 10.1007/s00253-011-3803-4
Kwak, J.; McCue, L. A.; Trczianka, K.; Kendrick, K. E. Identification and characterization of a developmentally regulated protein, EshA, required for sporogenic hyphal branches in Streptomyces griseus. J.Bacteriol. 2001, 183 (10), 3004-15, 10.1128/JB.183.10.3004-3015.2001
Saito, N.; Matsubara, K.; Watanabe, M.; Kato, F.; Ochi, K. Genetic and biochemical characterization of EshA, a protein that forms large multimers and affects developmental processes in Streptomyces griseus. J. Biol. Chem. 2003, 278 (8), 5902-11, 10.1074/jbc.M208564200
Kawamoto, S.; Watanabe, M.; Saito, N.; Hesketh, A.; Vachalova, K.; Matsubara, K.; Ochi, K. Molecular and functional analyses of the gene (eshA) encoding the 52-kilodalton protein of Streptomyces coelicolor A3(2) required for antibiotic production. J. Bacteriol. 2001, 183 (20), 6009-16, 10.1128/JB.183.20.6009-6016.2001
Saito, N.; Xu, J.; Hosaka, T.; Okamoto, S.; Aoki, H.; Bibb, M. J.; Ochi, K. EshA accentuates ppGpp accumulation and is conditionally required for antibiotic production in Streptomyces coelicolor A3(2). J. Bacteriol. 2006, 188 (13), 4952-61, 10.1128/JB.00343-06