Life sciences: Multidisciplinary, general & others
Author, co-author :
Rees, C. A.; Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States
Nordick, K. V.; Dartmouth College, Hanover, NH 03755, United States
Franchina, Flavio ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Lewis, A. E.; Dartmouth College, Hanover, NH 03755, United States
Hirsch, E. B.; Northeastern University, Boston, MA 02115, United States, Beth Israel Deaconess Medical Center, Boston, MA 02115, United States
Hill, J. E.; Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States, Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States
Language :
English
Title :
Volatile metabolic diversity of Klebsiella pneumoniae in nutrient-replete conditions
Bean, H. D., Dimandja, J. M., & Hill, J. E. (2012). Bacterial volatile discovery using solid phase microextraction and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Journal of chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 901, 41–46.
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate - a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B, Statistical Methodology, 57(1), 289–300.
Boots, A. W., Smolinska, A., Van Berkel, J. J., Fijten, R. R., Stobberingh, E. E., Boumans, M. L., Moonen, E. J., Wouters, E. F., Dallinga, J. W., & Van Schooten, F. J. (2014). Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography-mass spectrometry. Journal of Breath Research, 8(2), 027106.
Borer, A., Saidel-Odes, L., Riesenberg, K., Eskira, S., Peled, N., Nativ, R., Schlaeffer, F., & Sherf, M. (2009). Attributable mortality rate for carbapenem-resistant Klebsiella pneumoniae bacteremia. Infection Control and Hospital Epidemiology: The Official Journal of the Society of Hospital Epidemiologists of America, 30(10), 972–976.
Bos, L. D., Sterk, P. J., & Schultz, M. J. (2013). Volatile metabolites of pathogens: a systematic review. PLoS Pathogens, 9(5), e1003311.
Bruins, M., Bos, A., Petit, P. L., Eadie, K., Rog, A., Bos, R., Van Ramshorst, G. H., & Van Belkum, A. (2009). Device-independent, real-time identification of bacterial pathogens with a metal oxide-based olfactory sensor. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 28(7), 775–780.
Diancourt, L., Passet, V., Verhoef, J., Grimont, P. A., & Brisse, S. (2005). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. Journal of Clinical Microbiology, 43(8), 4178–4182.
Dieterle, F., Ross, A., Schlotterbeck, G., & Senn, H. (2006). Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1 H NMR metabonomics. Analytical Chemistry, 78(13), 4281–4290.
Elgaali, H., Hamilton-Kemp, T. R., Newman, M. C., Collins, R. W., Yu, K., & Archbold, D. D. (2002). Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria. Journal of Basic Microbiology, 42(6), 373–380.
Gao, J., Zou, Y., Wang, Y., Wang, F., Lang, L., Wang, P., Zhou, Y., & Ying, K. (2016). Breath analysis for noninvasively differentiating Acinetobacter baumannii ventilator-associated pneumonia from its respiratory tract colonization of ventilated patients. Journal of Breath Research, 10(2), 027102.
Gisbert, J. P., & Pajares, J. M. (2004). Review article: 13 C-urea breath test in the diagnosis of Helicobacter pylori infection – a critical review. Alimentary Pharmacology and Therapeutics, 20(10), 1001–1017.
Hirsch, E. B., Chang, K. T., Zucchi, P. C., Francoeur, D. N., Ledesma, K. R., Tam, V. H., & Lasco, T. M. (2014). An evaluation of multiple phenotypic screening methods for Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae. Journal of Infection and Chemotherapy: Official Journal of the Japan Society of Chemotherapy, 20(3), 224–227.
Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417–441.
Julak, J., Prochazkova-Francisci, E., Stranska, E., & Rosova, V. (2003). Evaluation of exudates by solid phase microextraction-gas chromatography. Journal of microbiological methods, 52(1), 115–122.
Julak, J., Stranska, E., Prochazkova-Francisci, E., & Rosova, V. (2000). Blood cultures evaluation by gas chromatography of volatile fatty acids. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 6(3), 605–610.
Junger, M., Vautz, W., Kuhns, M., Hofmann, L., Ulbricht, S., Baumbach, J. I., Quintel, M., & Perl, T. (2012). Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Applied Microbiology and Biotechnology, 93(6), 2603–2614.
Kiviranta, H., Tuomainen, A., Reiman, M., Laitinen, S., Liesivuori, J., & Nevalainen, A. (1998). Qualitative identification of volatile metabolites from two fungi and three bacteria species cultivated on two media. Central European Journal of Public Health, 6(4), 296–299.
Koo, S., Thomas, H. R., Daniels, S. D., Lynch, R. C., Fortier, S. M., Shea, M. M., Rearden, P., Comolli, J. C., Baden, L. R., & Marty, F. M. (2014). A breath fungal secondary metabolite signature to diagnose invasive aspergillosis. Clinical Infectious Diseases: an Official Publication of The Infectious Diseases Society of America, 59(12), 1733–1740.
Kovats, E. (1958). Gas-Chromatographische Charakterisierung Organischer Verbindungen 0.1. Retentionsindices Aliphatischer Halogenide, Alkohole, Aldehyde Und Ketone. Helvetica Chimica Acta, 41(7), 1915–1932.
Lechner, M., Fille, M., Hausdorfer, J., Dierich, M. P., & Rieder, J. (2005). Diagnosis of bacteria in vitro by mass spectrometric fingerprinting:a pilot study. Current Microbiology, 51(4), 267–269.
Lee, C. J., Demilo, A. B., Moreno, D. S., & Martinez, A. J. (1995). Analysis of the volatile components of a bacterial fermentation that is attractive to the mexican fruit-fly, Anastrepha ludens. Journal of Agricultural and Food Chemistry, 43(5), 1348–1351.
Liu, M., Durfee, T., Cabrera, J. E., Zhao, K., Jin, D. J., & Blattner, F. R. (2005). Global transcriptional programs reveal a carbon source foraging strategy by Escherichia coli. The Journal of Biological Chemistry, 280(16), 15921–15927.
Mann, H. B., & Whitney, D. R. (1947). On a Test of Whether One of 2 Random Variables Is Stochastically Larger Than the Other. The Annals of Mathematical Statistics, 18(1), 50–60.
Podschun, R., & Ullmann, U. (1998). Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clinical Microbiology Reviews, 11(4), 589–603.
Rees, C. A., Franchina, F. A., Nordick, K. V., Kim, P. J., & Hill, J. E. (2016a). Expanding the Klebsiella pneumoniae volatile metabolome using advanced analytical instrumentation for the detection of novel metabolites. Journal of Applied Microbiology. doi:10.1111/jam.13372.
Rees, C. A., Smolinska, A., & Hill, J. E. (2016b). The volatile metabolome of Klebsiella pneumoniae in human blood. Journal of Breath Research, 10(2), 027101.
Robacker, D. C., & Bartelt, R. J. (1997). Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. Journal of Chemical Ecology, 23(12), 2897–2915.
Schulz, S., & Dickschat, J. S. (2007). Bacterial volatiles: the smell of small organisms. Natural Product Reports, 24(4), 814–842.
Scott-Thomas, A. J., Syhre, M., Pattemore, P. K., Epton, M., Laing, R., Pearson, J., & Chambers, S. T. (2010). 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulmonary Medicine, 10, 56.
Sethi, S., Nanda, R., & Chakraborty, T. (2013). Clinical application of volatile organic compound analysis for detecting infectious diseases. Clinical Microbiology Reviews, 26(3), 462–475.
Shnayderman, M., Mansfield, B., Yip, P., Clark, H. A., Krebs, M. D., Cohen, S. J., Zeskind, J. E., Ryan, E. T., Dorkin, H. L., Callahan, M. V., Stair, T. O., Gelfand, J. A., Gill, C. J., Hitt, B., & Davis, C. E. (2005). Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Analytical Chemistry, 77(18), 5930–5937.
Storer, M. K., Hibbard-Melles, K., Davis, B., & Scotter, J. (2011). Detection of volatile compounds produced by microbial growth in urine by selected ion flow tube mass spectrometry (SIFT-MS). Journal of Microbiological Methods, 87(1), 111–113.
Syhre, M., & Chambers, S. T. (2008). The scent of Mycobacterium tuberculosis. Tuberculosis, 88(4), 317–323.
Syhre, M., Manning, L., Phuanukoonnon, S., Harino, P., & Chambers, S. T. (2009). The scent of Mycobacterium tuberculosis–part II breath. Tuberculosis, 89(4), 263–266.
Tait, E., Perry, J. D., Stanforth, S. P., & Dean, J. R. (2014). Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. Journal of Chromatographic Science, 52(4), 363–373.
Zechman, J. M., Aldinger, S., & Labows, J. N. Jr. (1986). Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. Journal of Chromatography, 377, 49–57.
Zhu, J., Bean, H. D., Jimenez-Diaz, J., & Hill, J. E. (2013a). Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. Journal of Applied Physiology (Bethesda, Md.: 1985), 114(11), 1544–1549.
Zhu, J., Bean, H. D., Wargo, M. J., Leclair, L. W., & Hill, J. E. (2013b). Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints. Journal of Breath Research, 7(1), 016003.