Paper published in a journal (Scientific congresses and symposiums)
Abstract numeration systems and tilings
Berthé, Valérie; Rigo, Michel
2005In Lecture Notes in Computer Science, 3618, p. 131-143
Peer reviewed
 

Files


Full Text
tiling-2.pdf
Author preprint (445.75 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Tiling; abstract numeration system; Rauzy fractal
Abstract :
[en] An abstract numeration system is a triple S = (L, Sigma, <) where (Z, <) is a totally ordered alphabet and L a regular language over Z; the associated numeration is defined as follows: by enumerating the words of the regular language L over Z with respect to the induced genealogical ordering, one obtains a one-to-one correspondence between N and L. Furthermore, when the language L is assumed to be exponential, real numbers can also be expanded. The aim of the present paper is to associate with S a self-replicating multiple tiling of athe space, under the following assumption: the adjacency matrix of the trimmed minimal automaton recognizing L is primitive with a dominant eigenvalue being a Pisot unit. This construction generalizes the classical constructions performed for Rauzy fractals associated with Pisot substitutions [16], and for central tiles associated with a Pisot beta-numeration [23].
Disciplines :
Mathematics
Computer science
Author, co-author :
Berthé, Valérie
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Abstract numeration systems and tilings
Publication date :
2005
Event name :
30th International Symposium: Mathematical Foundations of Computer Science
Event place :
Gdansk, Poland
Audience :
International
Journal title :
Lecture Notes in Computer Science
ISSN :
0302-9743
eISSN :
1611-3349
Publisher :
Springer-Verlag Berlin, Berlin, Germany
Special issue title :
Mathematical Foundations of Computer Science 2005, Proceedings
Volume :
3618
Pages :
131-143
Peer reviewed :
Peer reviewed
Commentary :
The original publication is available at www.springerlink.com
Available on ORBi :
since 10 December 2008

Statistics


Number of views
91 (9 by ULiège)
Number of downloads
4 (3 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
2
OpenCitations
 
1
OpenAlex citations
 
4

Bibliography


Similar publications



Contact ORBi