Abstract :
[en] This work aims at shedding light on how the microporous texture of porous carbons influences their electrochemical behavior when used as anodes for Li-ion batteries. To this aim, a synthetic hard carbon (carbon xerogel, CX), prepared from a resorcinol-formaldehyde precursor gel, underwent several post-synthesis treatments in order to modulate its micropore to total pore volume ratio. The micropore volume was either expanded by physical activation or decreased using chemical vapor deposition (CVD) of a carbon layer.
Several variables other than the micropore texture of the obtained carbons, which could influence their behavior as anode active materials for Li-ion batteries, such as the particle size or the electrode characteristics, were carefully controlled. The thickness of electrode coatings and the pore texture of the active material-binder composite were analyzed. It was shown that CX-binder composites resulting from water-based slurries preserve the microporosity of the starting materials. Detailed electrochemical characterization of the electrodes prepared with carbon xerogels displaying various defined micropore textures was performed. A clear linear dependency could be evidenced between the Li+ insertion and de-insertion in half-cell configuration with the increase of the volume of supermicropores (0.7 – 2 nm), demonstrating the effect of micropore enlargement by activation on the storage capacity, provided the maximum charge potential value is set at 3.0 V vs. Li+/Li.
Scopus citations®
without self-citations
20