[en] As the most sensitive magnetic field sensor, the superconducting quantum interference device (SQUID) became an essential component in many applications due to its unmatched performance. Through recently achieved miniaturization, using state-of-the-art fabrication methods, this fascinating device extended its functionality and became an important tool in nanomaterial characterization. Here, we present an accessible and yet powerful technique of targeted atom displacement in order to reduce the size of the weak links of a DC nano-SQUID beyond the limits of conventional lithography. The controllability of our protocol allows us to characterize in situ the full superconducting response after each electromigration step. From this in-depth analysis, we reveal an asymmetric evolution of the weak links at cryogenic temperatures. A comparison with time resolved scanning electron microscopy images of the atom migration process at room temperature confirms the peculiar asymmetric evolution of the parallel constrictions. Moreover, we observe that when electromigration has sufficiently reduced the junction’s cross section, superconducting phase coherence is attained in the dissipative state, where magnetic flux readout from voltage becomes possible.
Disciplines :
Physics
Author, co-author :
Keijers, Wout; Katholieke Universiteit Leuven - KUL
Baumans, Xavier ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Panghotra, Ritika; Katholieke Universiteit Leuven - KUL
Lombardo, Joseph ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Zharinov, Vyacheslav; Katholieke Universiteit Leuven - KUL
Kramer, Roman; Université Joseph Fourier - Grenoble 1 - UJF
Silhanek, Alejandro ; Université de Liège - ULiège > Département de physique > Physique expérimentale des matériaux nanostructurés
Van de Vondel, Joris; Katholieke Universiteit Leuven - KUL
Language :
English
Title :
Nano-SQUIDs with controllable weak links created via current-induced atom migration
R. C. Jaklevic J. Lambe A. H. Silver J. E. Mercereau Phys. Rev. Lett. 1964 12 159 160
W. Wernsdorfer K. Hasselbach D. Mailly B. Barbara A. Benoit L. Thomas G. Suran J. Magn. Magn. Mater. 1995 145 33 39
J. P. Cleuziou W. Wernsdorfer V. Bouchiat T. Ondarcuhu M. Monthioux Nat. Nanotechnol. 2006 1 53 59
A. Finkler Y. Segev Y. Myasoedov M. L. Rappaport L. Ne'Eman D. Vasyukov E. Zeldov M. E. Huber J. Martin A. Yacoby Nano Lett. 2010 10 1046 1049
D. Halbertal J. Cuppens M. B. Shalom L. Embon N. Shadmi Y. Anahory H. R. Naren J. Sarkar A. Uri Y. Ronen Y. Myasoedov L. S. Levitov E. Joselevich A. K. Geim E. Zeldov Nature 2016 539 407 410
C. Granata A. Vettoliere Phys. Rep. 2016 614 1 69
R. F. Voss R. B. Laibowitz A. N. Broers Appl. Phys. Lett. 1980 37 656 658
J. Lombardo Ž. L. Jelić X. D. A. Baumans J. E. Scheerder J. P. Nacenta V. V. Moshchalkov J. Van de Vondel R. B. G. Kramer M. V. Milošević A. V. Silhanek Nanoscale 2018 10 1987 1996
M. Tinkham, Introduction to superconductivity, McGraw Hill, New York, 1996
D. Chaverri V. Castano Mater. Lett. 1991 12 344 348
J. Pearl Appl. Phys. Lett. 1964 5 65 66
J. Romijn T. M. Klapwijk M. J. Renne J. E. Mooij Phys. Rev. B: Condens. Matter Mater. Phys. 1982 26 3648 3655
H. Koch and H. Lübbig, Proceedings in Physics: Superconducting Devices and Their Applications, Springer, 1991
I. O. Kulik and A. N. Omel'yanchuk, Contribution to the microscopic theory of the Josephson effect in superconducting bridges, 1975
R. Vijay E. M. Levenson-Falk D. H. Slichter I. Siddiqi Appl. Phys. Lett. 2010 96 2 5
C. D. Tesche J. Clarke J. Low Temp. Phys 1977 29 301 331
H. M. Greenhouse IEEE Trans. Parts, Hybrids, Packag. 1974 10 101 109
J. Black IEEE Trans. Electron Devices 1969 16 338 347
R. Hoffmann-Vogel Appl. Phys. Rev. 2017 4 031302
X. D. A. Baumans D. Cerbu O.-A. Adami V. S. Zharinov N. Verellen G. Papari J. E. Scheerder G. Zhang V. V. Moshchalkov A. V. Silhanek J. Van de Vondel Nat. Commun. 2016 7 10560
V. S. Zharinov X. D. A. Baumans A. V. Silhanek E. Janssens J. Van De Vondel Rev. Sci. Instrum. 2018 89 043904
C. N. Lau N. Markovic M. Bockrath A. Bezryadin M. Tinkham Phys. Rev. Lett. 2001 87 217003
A. Bezryadin C. N. Lau M. Tinkham Nature 2000 404 971 974
D. S. Golubev A. D. Zaikin Phys. Rev. B: Condens. Matter Mater. Phys. 2001 64 1 14
A. Uri A. Y. Meltzer Y. Anahory L. Embon E. O. Lachman D. Halbertal N. Hr Y. Myasoedov M. E. Huber A. F. Young E. Zeldov Nano Lett. 2016 16 6910 6915
J. Meyer G. v. Minnigerode Phys. Lett. A 1972 38 529 530
X. D. A. Baumans V. Zharinov E. Raymenants S. Alvarez J. Scheerder J. Brisbois D. Massarotti R. Caruso F. Tafuri E. Janssens V. Moshchalkov J. Van De Vondel A. Silhanek Sci. Rep. 2017 7 1 12
W. J. Skocpol M. R. Beasley M. Tinkham J. Low Temp. Phys. 1974 16 145 167
F. Hübler J. C. Lemyre D. Beckmann H. V. Löhneysen Phys. Rev. B: Condens. Matter Mater. Phys. 2010 81 1 9
D. Y. Vodolazov F. M. Peeters Phys. Rev. B: Condens. Matter Mater. Phys. 2007 76 014521
M. D. Thompson M. Ben Shalom A. K. Geim A. J. Matthews J. White Z. Melhem Y. A. Pashkin R. P. Haley J. R. Prance Appl. Phys. Lett. 2017 110 014521
D. Hazra J. R. Kirtley K. Hasselbach Appl. Phys. Lett. 2013 103 2 5
L. Hao J. C. Macfarlane J. C. Gallop D. Cox J. Beyer D. Drung T. Schurig Appl. Phys. Lett. 2008 92 192507
S. K. H. Lam D. L. Tilbrook Appl. Phys. Lett. 2003 82 1078 1080