Mellors, T. R.; Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, United States
Rees, C. A.; Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, United States
Franchina, Flavio ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie analytique, organique et biologique
Burklund, A.; Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, United States
Patel, C.; Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, United States
Hathaway, L. J.; Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland
Hill, J. E.; Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, United States, Geisel School of Medicine at Dartmouth, 1 Rope Ferry Road, Hanover, NH 03755, United States
Language :
English
Title :
The volatile molecular profiles of seven Streptococcus pneumoniae serotypes
Publication date :
2018
Journal title :
Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences
Catherine Hyams, E.C., Cohen, Jonathan M., Bax, Katie, Brown, Jeremy S., The Streptococcus pneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect. Immun. 78:2 (2010), 704–715.
Moxon, E.R., Kroll, J.S., The role of bacterial polysaccharide capsules as virulence factors. Jann, K., Jann, B., (eds.) Bacterial Capsules, 1990, Springer, Berlin Heidelberg, 65–85.
Watson, D.A., Musher, D.M., Jacobson, J.W., Verhoef, J., A brief history of the pneumococcus in biomedical research: a panoply of scientific discovery. Clin. Infect. Dis. 17 (1993), 913–924.
Weinberger, D.M., Trzciński, K., Lu, Y.J., Bogaert, D., Brandes, A., Galagan, J., Anderson, P.W., Malley, R., Lipsitch, M., Pneumococcal capsular polysaccharide structure predicts serotype prevalence. PLoS Pathog., 5(6), 2009, e1000476 (Jun 12).
Wartha, F., Beiter, K., Albiger, B., Fernebro, J., Zychlinsky, A., Normark, S., Henriques-Normark, B., Capsule andd-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9 (2007), 1162–1171.
Nuorti, J.P., Whitney, C.G., Prevention of Pneumococcal Disease Among Infants and Children: Use of 13-valent Pneumococcal Conjugate Vaccine and 23-valent Pneumococcal Polysaccharide Vaccine: Recommendations of the Advisory Committee on Immunization Practices (ACIP). 2010, Department of Health and Human Services, Centers for Disease Control and Prevention.
Weinberger, D.M., Malley, R., Lipsitch, M., Serotype replacement in disease following pneumococcal vaccination: a discussion of the evidence. Lancet 378 (2011), 1962–1973.
Richter, S.S., Heilmann, K.P., Dohrn, C.L., Riahi, F., Diekema, D.J., Doern, G.V., Evaluation of pneumococcal serotyping by multiplex PCR and Quellung reactions. J. Clin. Microbiol. 51 (2013), 4193–4195.
Boilot, P., Hines, E.L., Gardner, J.W., Pitt, R., John, S., Mitchell, J., Morgan, D.W., Classification of bacteria responsible for ENT and eye infections using the Cyranose system. IEEE Sensors J. 2 (2002), 247–253.
Dutta, R., Das, A., Stocks, N.G., Morgan, D., Stochastic resonance-based electronic nose: a novel way to classify bacteria. Sensors Actuators B Chem. 115 (2006), 17–27.
Lai, S.Y., Deffenderfer, O.F., Hanson, W., Phillips, M.P., Thaler, E.R., Identification of upper respiratory bacterial pathogens with the electronic nose. Laryngoscope 112 (2002), 975–979.
Lim, S.H., Mix, S., Anikst, V., Budvytiene, I., Eiden, M., Churi, Y., Queralto, N., Berliner, A., Martino, R.A., Rhodes, P.A., Bacterial culture detection and identification in blood agar plates with an optoelectronic nose. Analyst 141 (2016), 918–925.
Moens, M., Smet, A., Naudts, B., Verhoeven, J., Ieven, M., Jorens, P., Geise, H., Blockhuys, F., Fast identification of ten clinically important micro-organisms using an electronic nose. Lett. Appl. Microbiol. 42 (2006), 121–126.
Filipiak, W., Sponring, A., Baur, M.M., Ager, C., Filipiak, A., Wiesenhofer, H., Nagl, M., Troppmair, J., Amann, A., Characterization of volatile metabolites taken up by or released from Streptococcus pneumoniae and Haemophilus influenzae by using GC-MS. Microbiology 158 (2012), 3044–3053.
Ishimaru, M., Yamada, M., Nakagawa, I., Sugano, S., Analysis of volatile metabolites from cultured bacteria by gas chromatography/atmospheric pressure chemical ionization–mass spectrometry. J. Breath Res., 2, 2008, 037021.
Julák, J., Procházková-Francisci, E., Stránská E., Rosová V., Evaluation of exudates by solid phase microextraction–gas chromatography. J. Microbiol. Methods 52 (2003), 115–122.
Preti, G., Thaler, E., Hanson, C.W., Troy, M., Eades, J., Gelperin, A., Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: analysis by solid-phase microextraction and gas chromatography–mass spectrometry. J. Chromatogr. B 877 (2009), 2011–2018.
Syhre, M., Chambers, S.T., The scent of Mycobacterium tuberculosis. Tuberculosis 88 (2008), 317–323.
Syhre, M., Manning, L., Phuanukoonnon, S., Harino, P., Chambers, S.T., The scent of Mycobacterium tuberculosis–part II breath. Tuberculosis 89 (2009), 263–266.
Nizio, K., Perrault, K., Troobnikoff, A., Ueland, M., Shoma, S., Iredell, J., Middleton, P., Forbes, S., In vitro volatile organic compound profiling using GC × GC-TOFMS to differentiate bacteria associated with lung infections: a proof-of-concept study. J. Breath Res., 10, 2016, 026008.
Ballabio, C., Cristoni, S., Puccio, G., Kohler, M., Sala, M.R., Brambilla, P., Sinues, P.M.-L., Rapid identification of bacteria in blood cultures by mass-spectrometric analysis of volatiles. J. Clin. Pathol. 67 (2014), 743–746.
Dolch, M.E., Janitza, S., Boulesteix, A.-L., Graßmann-Lichtenauer, C., Praun, S., Denzer, W., Schelling, G., Schubert, S., Gram-negative and-positive bacteria differentiation in blood culture samples by headspace volatile compound analysis. J. Biol. Res. (Thessaloniki), 23, 2016, 3.
Allardyce, R.A., Langford, V.S., Hill, A.L., Murdoch, D.R., Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J. Microbiol. Methods 65 (2006), 361–365.
Allardyce, R.A., Hill, A.L., Murdoch, D.R., The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn. Microbiol. Infect. Dis. 55 (2006), 255–261.
Chippendale, T.W., Gilchrist, F.J., Španěl, P., Alcock, A., Lenney, W., Smith, D., Quantification by SIFT-MS of volatile compounds emitted by in vitro cultures of S. aureus, S. pneumoniae and H. influenzae isolated from patients with respiratory diseases. Anal. Methods 6 (2014), 2460–2472.
Scotter, J.M., Allardyce, R.A., Langford, V.S., Hill, A., Murdoch, D.R., The rapid evaluation of bacterial growth in blood cultures by selected ion flow tube–mass spectrometry (SIFT-MS) and comparison with the BacT/ALERT automated blood culture system. J. Microbiol. Methods 65 (2006), 628–631.
Hathaway, L.J., Brugger, S.D., Morand, B., Bangert, M., Rotzetter, J.U., Hauser, C., Graber, W.A., Gore, S., Kadioglu, A., Mühlemann, K., Capsule type of Streptococcus pneumoniae determines growth phenotype. PLoS Pathog., 8(3), 2012, e1002574 (Mar 8).
Mann, H.B., Whitney, D.R., On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat., 1947, 50–60.
Hotelling, H., Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 24 (1933), 417–441.
Breiman, L., Random forests. Mach. Learn. 45 (2001), 5–32.
Lasko, T.A., Bhagwat, J.G., Zou, K.H., Ohno-Machado, L., The use of receiver operating characteristic curves in biomedical informatics. J. Biomed. Inform. 38 (2005), 404–415.
Schallschmidt, K., Becker, R., Jung, C., Rolff, J., Fichtner, I., Nehls, I., Investigation of cell culture volatilomes using solid phase micro extraction: options and pitfalls exemplified with adenocarcinoma cell lines. J. Chromatogr. B 1006 (2015), 158–166.
Jünger, M., Vautz, W., Kuhns, M., Hofmann, L., Ulbricht, S., Baumbach, J.I., Quintel, M., Perl, T., Ion mobility spectrometry for microbial volatile organic compounds: a new identification tool for human pathogenic bacteria. Appl. Microbiol. Biotechnol. 93:6 (2012), 2603–2614 (Mar 1).
Bentley, S.D., Aanensen, D.M., Mavroidi, A., Saunders, D., Rabbinowitsch, E., Collins, M., Donohoe, K., Harris, D., Murphy, L., Quail, M.A., Samuel, G., Skovsted, I.C., Kaltoft, M.S., Barrell, B., Reeves, P.R., Parkhill, J., Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet., 2(3), 2006, e31.
Song, C., Hong, X., Zhao, S., Liu, J., Schulenburg, K., Huang, F.-C., Franz-Oberdorf, K., Schwab, W., Glucosylation of 4-hydroxy-2, 5-dimethyl-3 (2H)-furanone, the key strawberry flavor compound in strawberry fruit. Plant Physiol. 171 (2016), 139–151.
Cheng, J., Wei, G., Zhou, H., Gu, C., Vimolmangkang, S., Liao, L., Han, Y., Unraveling the mechanism underlying the glycosylation and methylation of anthocyanins in peach. Plant Physiol. 166 (2014), 1044–1058.
Montefiori, M., Espley, R.V., Stevenson, D., Cooney, J., Datson, P.M., Saiz, A., Atkinson, R.G., Hellens, R.P., Allan, A.C., Identification and characterisation of F3GT1 and F3GGT1, two glycosyltransferases responsible for anthocyanin biosynthesis in red-fleshed kiwifruit (Actinidia chinensis). Plant J. 65 (2011), 106–118.