[en] Periodontitis is an inflammatory disease that destroys the tooth-supporting
attachment apparatus. Guided tissue regeneration (GTR) is a technique based on a bar- rier membrane designed to prevent wound space colonization by gingival cells. This study examined a new formulation composed of two polymers that could be photochemically cross-linked in situ into an interpenetrated polymer network (IPN) forming a hydrogel mem- brane. Methods. We synthetized and characterized silanized hydroxypropyl methylcellulose (Si- HPMC) for its cell barrier properties and methacrylated carboxymethyl chitosan (MA-CMCS) for its degradable backbone to use in IPN. Hydrogel membranes were cross-linked using riboflavin photoinitiator and a dentistry visible light lamp. The biomaterial’s physicochem- ical and mechanical properties were determined. Hydrogel membrane degradation was evaluated in lysozyme. Cytocompatibility was estimated by neutral red uptake. The cell bar- rier property was studied culturing human primary gingival fibroblasts or human gingival explants on membrane and analyzed with confocal microscopy and histological staining. Results. The IPN hydrogel membrane was obtained after 120 s of irradiation. The IPN showed a synergistic increase in Young moduli compared with the single networks. The CMCS addition in IPN allows a progressive weight loss compared to each polymer network. Cyto- compatibility was confirmed by neutral red assay. Human cell invasion was prevented by hydrogel membranes and histological sections revealed that the biomaterial exhibited a barrier effect in contact with soft gingival tissue.
Research Center/Unit :
Center for Education and Research on Macromolecules (CERM) CESAM - Complex and Entangled Systems from Atoms to Materials - ULiège
Disciplines :
Chemistry Materials science & engineering
Author, co-author :
Chichiricco, Pauline Marie ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM) > University of Nantes, Inserm, Regenerative Medicine and Skeleton, France
Riva, Raphaël ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Thomassin, Jean-Michel ; Université de Liège - ULiège > Département de chimie (sciences) > Centre d'études et de rech. sur les macromolécules (CERM)
Lesoeur, Julie; University of Nantes, Inserm, Regenerative Medicine and Skeleton, UFR d'Odontologie, France > CHU Nantes, Structure Fédérative de Recherche François Bonamy
Struillou, Xavier; University of Nantes, Inserm, Regenerative Medicine and Skeleton, UFR d'Odontologie, France > CHU Nantes, OTONN, France
Le Visage, Catherine; University of Nantes, Inserm, Regenerative Medicine and Skeleton, UFR d'Odontologie, France
Jérôme, Christine ; University of Liège (ULiège), Complex and Entangled Systems from Atoms to Materials (CESAM), Center for Education and Research on Macromolecules (CERM)
Weiss, Pierre; University of Nantes, Inserm, Regenerative Medicine and Skeleton, UFR d'Odontologie, France > CHU Nantes, OTONN, France
Language :
English
Title :
In situ photochemical crosslinking of hydrogel membrane for guided tissue regeneration
Publication date :
December 2018
Journal title :
Dental Materials
ISSN :
0109-5641
eISSN :
1879-0097
Publisher :
Elsevier, Netherlands
Volume :
34
Issue :
12
Pages :
1769-1782
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
The Erasumus Mundus project "Nanofar" The Euronanomed II project "POsTURE"
Albandar, J.M., Rams, T.E., Global epidemiology of periodontal diseases: an overview. Periodontol 2000 29 (2002), 7–10, 10.1034/j.1600-0757.2002.290101.x.
de Oliveira, C., Watt, R., Hamer, M., Toothbrushing, inflammation, and risk of cardiovascular disease: results from Scottish health survey. BMJ, 340, 2010, c2451, 10.1136/bmj.c2451.
Cullinan, M.P., Seymour, G.J., Periodontal disease and systemic illness: will the evidence ever be enough?. Periodontol 2000 62 (2013), 271–286, 10.1111/prd.12007.
Hugoson, A., Norderyd, O., Has the prevalence of periodontitis changed during the last 30 years?. J Clin Periodontol 35 (2008), 338–345, 10.1111/j.1600-051X.2008.01279.x.
Socransky, S.S., Haffajee, A.D., The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol 63 (1992), 322–331, 10.1902/jop.1992.63.4s.322.
Gross, A.J., Paskett, K.T., Cheever, V.J., Lipsky, M.S., Periodontitis: a global disease and the primary care provider's role. Postgrad Med J, 2017, 1–6, 10.1136/postgradmedj-2017-134801.
Bottino, M.C., Thomas, V., Schmidt, G., Vohra, Y.K., Chu, T.G., Kowolik, M.J., et al. Recent advances in the development of GTR/GBR membranes for periodontal regeneration — a materials perspective. Dent Mater 28 (2012), 703–721, 10.1016/j.dental.2012.04.022.
Sheikh, Z., Qureshi, J., Alshahrani, A.M., Nassar, H., Ikeda, Y., Glogauer, M., et al. Collagen based barrier membranes for periodontal guided bone regeneration applications. Odontology 105 (2017), 1–12, 10.1007/s10266-016-0267-0.
Wang, J., Wang, L., Zhou, Z., Lai, H., Xu, P., Liao, L., et al. Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review. Polymers (Basel) 8 (2016), 1–20, 10.3390/polym8040115.
Dimitriou, R., Mataliotakis, G.I., Calori, G.M., Giannoudis, P.V., The role of barrier membranes for guided bone regeneration and restoration of large bone defects: current experimental and clinical evidence. BMC Med, 10, 2012, 81, 10.1186/1741-7015-10-81.
Jung, R.E., Hälg, G.A., Thoma, D.S., Hämmerle, C.H.F., A randomized, controlled clinical trial to evaluate a new membrane for guided bone regeneration around dental implants. Clin Oral Implants Res 20 (2009), 162–168, 10.1111/j.1600-0501.2008.01634.x.
Coonts, B.A., Whitman, S.L., Donnell, M.O., Polson, A.M., Bogle, G., Garrett, S., et al. Biodegradation and biocompatibility of a guided tissue regeneration barrier membrane formed from a liquid polymer material. J Biomed Mater Res 42:November (2) (1998), 303–311.
Fellah, B.H., Fatimi, A., Quillard, S., Vinatier, C., Gauthier, O., Janvier, P., et al. Biomaterials The in vivo degradation of a ruthenium labelled polysaccharide-based hydrogel for bone tissue engineering. Biomaterials 30 (2009), 1568–1577, 10.1016/j.biomaterials.2008.11.031.
Mathieu, E., Lamirault, G., Toquet, C., Lhommet, P., Rederstorff, E., Sourice, S., et al. Intramyocardial delivery of mesenchymal stem cell-seeded hydrogel preserves cardiac function and attenuates ventricular remodeling after myocardial infarction. PLoS One, 7, 2012, 10.1371/journal.pone.0051991.
Trojani, C., Weiss, P., Michiels, J.F., Vinatier, C., Guicheux, J., Daculsi, G., et al. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel. Biomaterials 26 (2005), 5509–5517, 10.1016/j.biomaterials.2005.02.001.
Merceron, C., Portron, S., Masson, M., Lesoeur, J., Fellah, B.H., Gauthier, O., et al. The effect of two and three dimensional cell culture on the chondrogenic potential of human adipose-derived mesenchymal stem cells after subcutaneous transplantation with an injectable hydrogel. Cell Transplant 20 (2011), 1575–1588, 10.3727/096368910X557191.
Struillou, X., Boutigny, H., Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med, 2011, 1707–1717, 10.1007/s10856-011-4344-1.
Anseth, K.S., Burdick, J.A., New directions in photopolymerizable biomaterials. Mrs Bull 27 (2002), 130–136, 10.1557/mrs2002.49.
Matricardi, P., Di Meo, C., Coviello, T., Hennink, W.E., Alhaique, F., Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65 (2013), 1172–1187, 10.1016/j.addr.2013.04.002.
Valmikinathan, C.M., Mukhatyar, V.J., Jain, A., Karumbaiah, L., Dasari, M., Bellamkonda, R.V., Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 8 (2012), 1964–1976, 10.1039/C1SM06629C.
Amoozgar, Z., Rickett, T., Park, J., Tuchek, C., Shi, R., Yeo, Y., Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 8 (2012), 1849–1858, 10.1016/j.actbio.2012.01.022.
Viguier, A., Boyer, C., Chassenieux, C., Benyahia, L., Guicheux, J., Weiss, P., et al. Interpenetrated Si-HPMC/alginate hydrogels as a potential scaffold for human tissue regeneration. J Mater Sci Mater Med, 27, 2016, 99, 10.1007/s10856-016-5709-2.
Mourya, V.K., Inamdar, N.N., Tiwari, A., Carboxymethyl chitosan and its applications. Adv Mater Lett 1 (2010), 11–33, 10.5185/amlett.2010.3108.
Owens, G.J., Singh, R.K., Foroutan, F., Alqaysi, M., Han, C., Mahapatra, C., et al. Progress in polymer science polymeric materials for bone and cartilage repair. Carbohydr Polym 14 (2014), 167–182, 10.1016/j.pmatsci.2015.12.001.
Hu, J., Hou, Y., Park, H., Choi, B., Hou, S., Chung, A., et al. Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 8 (2012), 1730–1738, 10.1016/j.actbio.2012.01.029.
Nguyen, A.K., Gittard, S.D., Koroleva, A., Schlie, S., Gaidukeviciute, A., Chichkov, B.N., et al. Two-photon polymerization of polyethylene glycol diacrylate scaffolds with riboflavin and triethanolamine used as a water-soluble photoinitiator. Regen Med 8 (2013), 725–738, 10.2217/rme.13.60.
Kim, S.H., Chu, C.C., Visible light induced dextran-methacrylate hydrogel formation using (−)-riboflavin vitamin B2 as a photoinitiator and L-arginine as a co-initiator. Fibers Polym 10 (2009), 14–20, 10.1007/s12221-009-0014-z.
Beztsinna, N., Sole, M., Taib, N., Bestel, I., Bioengineered riboflavin in nanotechnology. Biomaterials 80 (2016), 121–133, 10.1016/j.biomaterials.2015.11.050.
Bourges, X., Weiss, P., Daculsi, G., Legeay, G., Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use. Adv Colloid Interface Sci 99 (2002), 215–228, 10.1016/S0001-8686(02)00035-0.
Fatimi, A., François Tassin, J., Quillard, S., Axelos, M.A.V., Weiss, P., The rheological properties of silated hydroxypropylmethylcellulose tissue engineering matrices. Biomaterials 29 (2008), 533–543, 10.1016/j.biomaterials.2007.10.032.
Fatimi, A., Tassin, J.F., Axelos, M.A.V., Weiss, P., The stability mechanisms of an injectable calcium phosphate ceramic suspension. J Mater Sci Mater Med 21 (2010), 1799–1809, 10.1007/s10856-010-4047-z.
Engineering, B., Zurich, T., Engineering, C., Engineering, C., Company, N., Introduction, H., In vitro and in vivo performance of porcine islets encapsulated in interfacially photopolymerized poiy (ethylene glycol) diacrylate membranes. Cell Transplant 8 (1999), 293–306.
Zuliani, T., Saiagh, S., Knol, A.C., Esbelin, J., Dréno, B., Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS One, 2013, 8, 10.1371/journal.pone.0070408.
Grenade, C., Moniotte, N., Rompen, E., Vanheusden, A., Mainjot, A., De Pauw-Gillet, M.C., A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials. Cytotechnology 68 (2016), 2437–2448, 10.1007/s10616-016-9964-3.
Lavergne, M., Derkaoui, M., Porous Polysaccharide-Based Scaffolds for Human Endothelial Progenitor Cells. Macromol Biosci, 2012, 901–910, 10.1002/mabi.201100431.
Fatimi, A., Tassin, J.F., Turczyn, R., Axelos, M.A.V., Weiss, P., Gelation studies of a cellulose-based biohydrogel: the influence of pH, temperature and sterilization. Acta Biomater 5 (2009), 3423–3432, 10.1016/j.actbio.2009.05.030.
Struillou, X., Boutigny, H., Badran, Z., Fellah, B.H., Gauthier, O., Sourice, S., et al. Treatment of periodontal defects in dogs using an injectable composite hydrogel/biphasic calcium phosphate. J Mater Sci Mater Med 22 (2011), 1707–1717, 10.1007/s10856-011-4344-1.
van Dijk-Wolthuis, W.N.E., Kettenes-van den Bosch, J.J., van der Kerk-van Hoof, A., Hennink, W.E., Reaction of dextran with glycidyl methacrylate: an unexpected transesterification. Macromolecules 30 (1997), 3411–3413, 10.1021/ma961764v.
Wang, D.-A., Varghese, S., Sharma, B., Strehin, I., Fermanian, S., Gorham, J., et al. Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration. Nat Mater 6 (2007), 385–392, 10.1038/nmat1890.
Prado, S.S., Weaver, J.M., Love, B.J., Gelation of photopolymerized hyaluronic acid grafted with glycidyl methacrylate. Mater Sci Eng C 31 (2011), 1767–1771, 10.1016/j.msec.2011.08.008.
Loessner, D., Meinert, C., Kaemmerer, E., Martine, L.C., Yue, K., Levett, P.A., et al. Functionalization, preparation and use of cell-laden gelatin methacryloyl?based hydrogels as modular tissue culture platforms. Nat Protoc 11 (2016), 727–746, 10.1038/nprot.2016.037.
Bryant, S.J., Nuttelman, C.R., Anseth, K.S., Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomater Sci Polym Ed 11 (2012), 439–457, 10.1163/156856200743805.
Bertolotti, S.G., Previtali, C.M., Rufs, A.M., Encinas, M.V., Riboflavin/triethanolamine as photoinitiator system of vinyl polymerization. A mechanistic study by laser flash photolysis. Macromolecules 32 (1999), 2920–2924, 10.1021/ma981246f.
Kim, S.-H., Chu, C.-C., Fabrication of a biodegradable polysaccharide hydrogel with riboflavin, vitamin B2, as a photo-initiator and L-arginine as coinitiator upon UV irradiation. J Biomed Mater Res B Appl Biomater 91 (2009), 390–400, 10.1002/jbm.b.31414.
Ahmad, I., Iqbal, K., Sheraz, M.A., Ahmed, S., Mirza, T., Kazi, S.H., et al. Photoinitiated polymerization of 2-hydroxyethyl methacrylate by riboflavin/triethanolamine in aqueous solution: a kinetic study. ISRN Pharm 2013, 2013, 958712, 10.1155/2013/958712.
Matricardi, P., Di Meo, C., Coviello, T., Hennink, W.E., Alhaique, F., Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev 65 (2013), 1172–1187, 10.1016/j.addr.2013.04.002.
Chen, Q., Chen, H., Zhu, L., Zheng, J., Materials chemistry B. Fundamentals of double network hydrogels. J Mater Chem B 3 (2015), 3645–3886, 10.1039/C5TB00123D.
Park, H., Choi, B., Hu, J., Lee, M., Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 9 (2013), 4779–4786, 10.1016/j.actbio.2012.08.033.
Arakawa, C., Ng, R., Tan, S., Kim, S., Wu, B., Lee, M., Photopolymerizable chitosan–collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med 11 (2017), 164–174, 10.1002/term.1896.
Franz, A., König, F., Skolka, A., Sperr, W., Bauer, P., Lucas, T., et al. Cytotoxicity of resin composites as a function of interface area. Dent Mater 23 (2007), 1438–1446, 10.1016/j.dental.2007.05.014.
Consideration I. OECD Test Guideline 432: In Vitro 3T3 NRU Phototoxicity Test 2004:1–15. doi: https://doi.org/10.1787/9789264071162-en.
Bauer, D., Averett, L.A., De Smedt, A., Kleinman, M.H., Muster, W., Pettersen, B.A., et al. Standardized UV–vis spectra as the foundation for a threshold-based, integrated photosafety evaluation. Regul Toxicol Pharmacol 68 (2014), 70–75, 10.1016/j.yrtph.2013.11.007.
Amsden, B.G., Sukarto, A., Knight, D.K., Shapka, S.N., Methacrylated glycol chitosan as a photopolymerizable biomaterial. Biomacromolecules 8 (2007), 3758–3766, 10.1021/bm700691e.
Hached, F., Vinatier, C., Pinta, P.G., Hulin, P., Le Visage, C., Weiss, P., et al. Polysaccharide hydrogels support the long-Term viability of encapsulated human mesenchymal stem cells and their ability to secrete immunomodulatory factors. Stem Cells Int 2017 (2017), 6–8, 10.1155/2017/9303598.
Nativel, F., Renard, D., Hached, F., Pinta, P., Arros, C.D., Weiss, P., et al. Application of millifluidics to encapsulate and support viable human mesenchymal stem cells in a polysaccharide hydrogel. Int J Mol Sci, 19(7), 2018, 10.3390/ijms19071952.
Moussa, L., Pattappa, G., Doix, B., Benselama, S., Demarquay, C., Benderitter, M., et al. A biomaterial-assisted mesenchymal stromal cell therapy alleviates colonic radiation-induced damage. Biomaterials, 115, 2017, 10.1016/j.biomaterials.2016.11.017.
Struillou, X., Fruchet, A., Rakic, M., Badran, Z., Rethore, G., Sourice, S., et al. Evaluation of a hydrogel membrane on bone regeneration in furcation periodontal defects in dogs. Dent Mater J, 2018, 10.4012/dmj.2017-238.