Abstract :
[en] The Juno spacecraft crossed flux tubes connected to the Io footprint tail at low Jovian altitudes on multiple occasions. The transits covered longitudinal separations of approximately 10° to 120° along the footprint tail. Juno's suite of magnetospheric instruments acquired detailed measurements of the Io footprint tail. Juno observed planetward electron energy fluxes of 70 mW/m2 near the Io footprint, and 10 mW/m2 farther down the tail, along with correlated, intense electric and magnetic wave signatures which also decreased down the tail. All observed electron distributions were broad in energy, suggesting a dominantly broadband acceleration process, and did not show any inverted-V structure that would be indicative of acceleration by a quasi-static, discrete, parallel potential. Observed waves were primarily below the proton cyclotron frequency, yet identification of a definitive wave mode is elusive. Beyond 40° down the footprint tail, Juno observed depleted upward loss cones, suggesting the broadband acceleration occurred at distances beyond Juno's transit distance of 1.3 to 1.7 RJ. For all transits, Juno observed fine structure on scales of 10s km, and confirmed independently with electron and waves measurements that a bifurcated tail can intermittently exist.
Scopus citations®
without self-citations
10