[en] Soil water retention curves (SWRCs) are crucial for characterizing soil moisture
dynamics, and are particularly relevant in the context of irrigation management. Inverse modelling is one of the methods used to parameterize models representing these curves, which are closest to the field reality. The objective of this study is to estimate the soil hydraulic properties through inverse modelling using the HYDRUS-1D code based on soil moisture and potential data acquired in the field. The in situ SWRCs acquired every 30 min are based on simultaneous soil water content and soil water potential measurements with 10HS and MPS-2 sensors, respectively, in five experimental fields. The fields were planted with drip-irrigated lettuces from February to March 2016 in the Chrey Bak catchment located in the Tonlé Sap Lake region, Cambodia. After calibration of the van Genuchten soil water retention model parameters, we used them to evaluate the performance of HYDRUS-1D to predict soil moisture dynamics in the studied fields. Water flow was reasonably well reproduced in all sites covering a range of soil types (loamy sand and loamy soil) with root mean square errors ranging from 0.02 to 0.03 cm3 cm−3.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Zijlstra, J.; Dane, J.H. Identification of Hydraulic Parameters in Layered Soils Based on a Quasi-Newzon Method. J. Hydrol. 1996, 181, 233–250. [CrossRef]
Schwen, A.; Bodner, G.; Loiskandl, W. Time-Variable Soil Hydraulic Properties in near-Surface Soil Water Simulations for Different Tillage Methods. Agric. Water Manag. 2011, 99, 42–50. [CrossRef]
Huang, J.; Purushothaman, R.; McBratney, A.; Bramley, H. Soil Water Extraction Monitored Per Plot across a Field Experiment Using Repeated Electromagnetic Induction Surveys. Soil Syst. 2018, 2, 11. [CrossRef]
Lai, J.; Ren, L. Estimation of Effective Hydraulic Parameters in Heterogeneous Soils at Field Scale. Geoderma 2016, 264, 28–41. [CrossRef]
Le Bourgeois, O.; Bouvier, C.; Brunet, P.; Ayral, P.A. Inverse Modeling of Soil Water Content to Estimate the Hydraulic Properties of a Shallow Soil and the Associated Weathered Bedrock. J. Hydrol. 2016, 541, 116–126. [CrossRef]
Vereecken, H.; Schnepf, A.; Hopmans, J.W.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.H.; Amelung, W.; Aitkenhead, M.; et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, 1–57. [CrossRef]
Peters, A.; Durner, W. Simplified Evaporation Method for Determining Soil Hydraulic Properties. J. Hydrol. 2008, 356, 147–162. [CrossRef]
Moret-Fernández, D.; Latorre, B. Estimate of the Soil Water Retention Curve from the Sorptivity and β Parameter Calculated from an Upward Infiltration Experiment. J. Hydrol. 2017, 544, 352–362. [CrossRef]
Hopmans, J.; Simunek, J. Review of Inverse Estimation of Soil Hydraulic Properties. In Characterization and Measurement of the Hydraulic Properties of Unsaturated Porous Media; van Genuchten, M.T., Leij, F.J., Eds.; University of California: Riverside, CA, USA, 1999; pp. 643–659.
Gupta, S.C.; Larson, W.E. Estimating Soil Water Retention Characteristics from Particle Size Distribution, Organic Matter Percent, and Bulk Density. Water Resour. Res. 1979, 15, 1633–1635. [CrossRef]
Botula, Y.D.; Van Ranst, E.; Cornelis, W.M. Pedotransfer Functions to Predict Water Retention for Soils of the Humid Tropics: A Review. Rev. Bras. Cienc. Solo 2014, 38, 679–698. [CrossRef]
Rashid, N.S.A.; Askari, M.; Tanaka, T.; Simunek, J.; van Genuchten, M.T. Inverse Estimation of Soil Hydraulic Properties under Oil Palm Trees. Geoderma 2015, 241–242, 306–312. [CrossRef]
Smagin, A.V. Column-Centrifugation Method for Determining Water Retention Curves of Soils and Disperse Sediments. Eurasian Soil Sci. 2012, 45, 416–422. [CrossRef]
Ramos, T.B.; Gonçalves, M.C.; Martins, J.C.; van Genuchten, M.T.; Pires, F.P. Estimation of Soil Hydraulic Properties from Numerical Inversion of Tension Disk Infiltrometer Data. Vadose Zone J. 2006, 5, 684–696. [CrossRef]
Schwartz, R.C.; Evett, S.R. Estimating Hydraulic Properties of a Fine-Textured Soil Using a Disc Infiltrometer. Soil Sci. Soc. Am. J. 2002, 66, 1409–1423. [CrossRef]
Ventrella, D.; Losavio, N.; Vonella, A.V.; Leij, F.J. Estimating Hydraulic Conductivity of a Fine-Textured Soil Using Tension Infiltrometry. Geoderma 2005, 124, 267–277. [CrossRef]
Lazarovitch, N.; Ben-Gal, A.; Šimunek, J.; Shani, U. Uniqueness of Soil Hydraulic Parameters Determined by a Combined Wooding Inverse Approach. Soil Sci. Soc. Am. J. 2007, 71, 860–865. [CrossRef]
Verbist, K.; Cornelis, W.M.; Gabriels, D.; Alaerts, K.; Soto, G.; Serena, L. Using an Inverse Modelling Approach to Evaluate the Water Retention in a Simple Water Harvesting Technique. Hydrol. Earth Syst. Sci. 2009, 13, 1979–1992. [CrossRef]
Latorre, B.; Moret-Fernández, D.; Peña, C. Estimate of Soil Hydraulic Properties from Disc Infiltrometer Three-Dimensional Infiltration Curve: Theoretical Analysis and Field Applicability. Procedia Environ. Sci. 2013, 19, 580–589. [CrossRef]
Degré, A.; van der Ploeg, M.; Caldwell, T.M.; Gooren, H. Comparison of Soil Water Potential Sensors: A Drying Experiment. Vadose Zone J. 2017, 16, 4. [CrossRef]
Asgarzadeh, H.; Mosaddeghi, M.R.; Dexter, A.R.; Mahboubi, A.A.; Neyshabouri, M.R. Determination of Soil Available Water for Plants: Consistency between Laboratory and Field Measurements. Geoderma 2014, 226–227, 8–20. [CrossRef]
Li, Y.B.; Liu, Y.; Nie, W.B.; Ma, X.Y. Inverse Modeling of Soil Hydraulic Parameters Based on a Hybrid of Vector-Evaluated Genetic Algorithm and Particle Swarm Optimization. Water 2018, 10, 84. [CrossRef]
Wang, T.; Franz, T.E.; Yue, W.; Szilagyi, J.; Zlotnik, V.A.; You, J.; Chen, X.; Shulski, M.D.; Young, A. Feasibility Analysis of Using Inverse Modeling for Estimating Natural Groundwater Recharge from a Large-Scale Soil Moisture Monitoring Network. J. Hydrol. 2016, 533, 250–265. [CrossRef]
Van den Berg, M.; Klamt, E.; Van Reeuwijk, L.P. Pedotransfer Functions for the Estimation of Moisture Retention Characteristics of Ferralsols and Related Soils. Geoderma 1997, 78, 161–180. [CrossRef]
Werisch, S.; Grundmann, J.; Al-Dhuhli, H.; Algharibi, E.; Lennartz, F. Multiobjective Parameter Estimation of Hydraulic Properties for a Sandy Soil in Oman. Environ. Earth Sci. 2014, 72, 4935–4956. [CrossRef]
Abbaspour, K.C.; Schulin, R.; Van Genuchten, M.T. Estimating Unsaturated Soil Hydraulic Parameters Using Ant Colony Optimization. Adv. Water Resour. 2001, 24, 827–841. [CrossRef]
Wohling, T.; Vrugt, J.A.; Barkle, G.F. Comparison of Three Multiobjective Optimization Algorithms for Inverse Modeling of Vadose Zone Hydraulic Properties. Soil Sci. Soc. Am. J. 2008, 72, 305–319. [CrossRef]
Kumar, S.; Sekhar, M.; Reddy, D.V.; Mohan Kumar, M.S. Estimation of Soil Hydraulic Properties and Their Uncertainty: Comparison between Laboratory and Field Experiment. Hydrol. Process. 2010, 24, 3426–3435. [CrossRef]
Osorio-Murillo, C.A.; Over, M.W.; Savoy, H.; Ames, D.P.; Rubin, Y. Software Framework for Inverse Modeling and Uncertainty Characterization. Environ. Model. Softw. 2015, 66, 98–109. [CrossRef]
Van Dam, J.C.; Stricker, J.N.M.; Droogers, P. Inverse Method for Determining Soil Hydraulic Functions from One-Step Outflow Experiments. Soil Sci. Soc. Am. J. 1992, 56, 1042–1050. [CrossRef]
Gardner, W.R. Some Steady-State Solutions of the Unsaturated Moisture Flow Equation with Application to Evaporation from a Water Table. Soil Sci. 1958, 85, 228–232. [CrossRef]
Durner, W. Hydraulic Conductivity Estimation for Soils with Heterogeneous Pore Structure. Water Resour. Res. 1994, 30, 211–223. [CrossRef]
Campbell, G. A Simple Method for Determining Unsaturated Conductivity from Moisture Retention Data. Soil Sci. 1974, 117, 311–314. [CrossRef]
Van Genuchten, M.T. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [CrossRef]
Lambot, S. A Global Multilevel Coordinate Search Procedure for Estimating the Unsaturated Soil Hydraulic Properties. Water Resour. Res. 2002, 38, 1–15. [CrossRef]
Fuentes, C.; Haverkamp, R.; Parlange, J.Y. Parameter Constraints on Closed-Form Soil Water Relationships. J. Hydrol. 1992, 134, 117–142. [CrossRef]
Shi, L.; Song, X.; Tong, J.; Zhu, Y.; Zhang, Q. Impacts of Different Types of Measurements on Estimating Unsaturated Flow Parameters. J. Hydrol. 2015, 524, 549–561. [CrossRef]
Kool, J.B.; Parker, J.C.; Van Genuchten, M.T. Determining Soil Hydraulic Properties from One-Step Outflow Experiments by Parameter Estimation: I. Theory and Numerical Studies. Soil Sci. Soc. Am. J. 1985, 49, 1348–1354. [CrossRef]
Toorman, A.F.; Wierenga, P.J.; Hills, R.G. Parameter Estimation of Hydraulic Properties from One-step Outflow Data. Water Resour. Res. 1992, 28, 3021–3028. [CrossRef]
Eching, S.O.; Hopmans, J.W. Optimization of Hydraulic Functions from Transient Outflow and Soil Water Pressure Data. Soil Sci. Soc. Am. J. 1993, 57, 1167–1175. [CrossRef]
Schelle, H.; Durner, W.; Iden, S.C.; Fank, J. Simultaneous Estimation of Soil Hydraulic and Root Distribution Parameters from Lysimeter Data by Inverse Modeling. Procedia Environ. Sci. 2013, 19, 564–573. [CrossRef]
Kechavarzi, C.; Špongrová, K.; Dresser, M.; Matula, S.; Godwin, R.J. Laboratory and Field Testing of an Automated Tension Infiltrometer. Biosyst. Eng. 2009, 104, 266–277. [CrossRef]
Wayllace, A.; Lu, N. A Transient Water Release and Imbibitions Method for Rapidly Measuring Wetting and Drying Soil Water Retention and Hydraulic Conductivity Functions. Geotech. Test. J. 2011, 35, 103–117.
Wang, J.E.; Xiang, W. Transient Water Release and Imbibition Properties of Remolded Sliding Zone Soil of Huangtupo Landslide in Three Gorges Reservoir Area, China. In Global View of Engineering Geology and the Environment, Proceedings of the International Symposium and 9th Asian Regional Conference of IAEG, Beijing, China, 23–25 September 2013; CRC Press: London, UK, 2014; p. 228.
Lu, N. Validating the Effective Stress Principle in Unsaturated Soil Using Non-Failure Tests. In Unsaturated Soils: Research & Applications; Khalili, N., Russell, A., Khoshghalb, A., Eds.; CRC Press: London, UK, 2014; pp. 31–41.
Mun, W.; Teixeira, T.; Balci, M.C.; Svoboda, J.; Mccartney, J.S. Rate Effects on the Undrained Shear Strength of Compacted Clay. Soil Found. 2016, 56, 719–731. [CrossRef]
Lu, N.; Wayllace, A.; Oh, S. Infiltration-Induced Seasonally Reactivated Instability of a Highway Embankment near the Eisenhower Tunnel, Colorado, USA. Eng. Geol. 2013, 162, 22–32. [CrossRef]
Lu, N.; Godt, J.W. Hillslope Hydrology and Stability; Cambridge University Press: Cambridge, UK, 2013.
Ritter, A.; Hupet, F.; Munoz-Carpena, R.; Lambot, S.; Vanclooster, M. Using Inverse Methods for Estimating Soil Hydraulic Properties from Field Data as an Alternative to Direct Methods. Agric. Water Manag. 2003, 59, 77–96. [CrossRef]
Köhne, J.M.; Köhne, S.; Šimůnek, J. A Review of Model Applications for Structured Soils: A) Water Flow and Tracer Transport. J. Contam. Hydrol. 2009, 104, 4–35. [CrossRef] [PubMed]
Filipović, V.; Weninger, T.; Filipović, L.; Schwen, A.; Bristow, K.L.; Zechmeister-Boltenstern, S.; Leitner, S. Inverse Estimation of Soil Hydraulic Properties and Water Repellency Following Artificially Induced Drought Stress. J. Hydrol. Hydromech. 2018, 66, 170–180. [CrossRef]
Chann, S.; Wales, N.; Frewer, T. An Investigation of Land Cover and Land Use Change in Stung Chrey Bak Catchment, Cambodia; CDRI: Phnom Penh, Cambodia, 2011.
FAO (Food and Agriculture Organization of the United Nations). Guidelines for Soil Description, 4th, ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006.
Ket, P.; Garré, S.; Oeurng, C.; Hok, L.; Degré, A. Simulation of Crop Growth and Water-Saving Irrigation Scenarios for Lettuce: A Monsoon-Climate Case Study in Kampong Chhnang, Cambodia. Water 2018, 10, 666. [CrossRef]
Andersland, O.B.; Ladanyi, B. Frozen Ground Engineering, 3rd, ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004.
Liénard, A.; Colinet, G. Transfert En Cadmium et Zinc Vers l ’orge de Printemps En Sols Contaminés et Non Contaminés de Belgique: Évaluation et Prédiction. Cah. Agric 2018, 27, 1–10. [CrossRef]
Wooding, R.A. Steady Infiltration from a Shallow Circular Pond. Water Resour. Res. 1968, 4, 1259–1273. [CrossRef]
Fisher, D.K.; Gould, P.J. Open-Source Hardware Is a Low-Cost Alternative for Scientific Instrumentation and Research. Mod. Instrum. 2012, 1, 8–20. [CrossRef]
Decagon Devices. MPS-2 & MPS-6 Dielectric Water Potential Sensors, Operator’s Manual; Decagon Devices, Inc.: Pullman, WA, USA, 2016.
Decagon Devices. MPS-2 Dielectric Water Potential Sensor: Operator’s Manual; Decagon Devices, Inc.: Pullman, WA, USA, 2011.
Decagon Devices. 10HS Soil Moisture Sensor Operator’s Manual; Version 3; Decagon Devices, Inc.: Pullman, WA, USA, 2010.
Visconti, F.; de Paz, J.M.; Martínez, D.; Molina, M.J. Laboratory and Field Assessment of the Capacitance Sensors Decagon 10HS and 5TE for Estimating the Water Content of Irrigated Soils. Agric. Water Manag. 2014, 132, 111–119. [CrossRef]
Mittelbach, H.; Lehner, I.; Seneviratne, S.I. Comparison of Four Soil Moisture Sensor Types under Field Conditions in Switzerland. J. Hydrol. 2012, 430–431, 39–49. [CrossRef]
Cobos, D.; Chamber, C. Application Note Calibrating ECH2O Soil Moisture Sensors; Decagon Devices, Inc.: Pullman, WA, USA, 2005; pp. 1–5.
Irmak, S.; Howell, T.A.; Allen, R.G.; Payero, J.O.; Martin, D.L. Standardized ASCE Penman-Monteith: Impact of Sum-of-Hourly vs. 24-Hour Timestep Computations at Reference Weather Station Sites. Trans. ASAE 2005, 48, 1063–1077. [CrossRef]
Allen, R.; Walter, I.; Elliott, R. The ASCE Standardized Reference Evapotranspiration Equation; American Society of Civil Engineers: Reston, VA, USA, 2005.
Allen, R.G.; Pruitt, W.O.; Wright, J.L.; Howell, T.A.; Ventura, F.; Snyder, R.; Itenfisu, D.; Steduto, P.; Berengena, J.; Baselga, J.; et al. A Recommendation on Standardized Surface Resistance for Hourly Calculation of Reference ETo by the FAO56 Penman-Monteith Method. Agric. Water Manag. 2006, 81, 1–22. [CrossRef]
Tolk, J.A.; Evett, S.R.; Schwartz, R.C. Field-Measured, Hourly Soil Water Evaporation Stages in Relation to Reference Evapotranspiration Rate and Soil to Air Temperature Ratio. Vadose Zone J. 2015, 14, 1–14. [CrossRef]
Kool, D.; Agam, N.; Lazarovitch, N.; Heitman, J.L.; Sauer, T.J.; Ben-gal, A. A Review of Approaches for Evapotranspiration Partitioning. Agric. For. Meteorol. 2014, 184, 56–70. [CrossRef]
Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning Evapotranspiration, Yield Prediction and Economic Returns of Maize under Various Irrigation Management Strategies. Agric. Water Manag. 2014, 135, 27–39. [CrossRef]
Gallardo, M.; Snyder, R.; Schulbach, K.; Jackson, L. Crop Growth and Water Use Model for Lettuce. J. Irrig. Drain. Eng. 1996, 122, 354–359. [CrossRef]
Doorenbos, J.; Pruitt, W.O. Guidelines for Predicting Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1977.
Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; Van Genuchten, M. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water Heat, and Multiple Solutes in Variably-Saturated Media; Department of Environmental Sciences, University of California: Riverside, CA, USA, 2005.
May, P.; Genuchten, V. Modeling Nonequilibrium Flow and Transport Processes Using HYDRUS. Vadose Zone J. 2008, 7, 782–797.
Mualem, Y. A New Model for Predicting the Hydraulic Conductivity of Unsaturated Porous Media. Water Resour. Res. 1976, 12, 513–522. [CrossRef]
Šimůnek, J.; Jarvis, N.J.; van Genuchten, M.T.; Gärdenäs, A. Review and Comparison of Models for Describing Non-Equilibrium and Preferential Flow and Transport in the Vadose Zone. J. Hydrol. 2003, 272, 14–35. [CrossRef]
Radcliffe, D.E.; Simunek, J. Soil Physics with Hydrus Modeling and Applications; CRC Press, Taylor and Francis Group, LLC: Boca Raton, FL, USA, 2010.
Soltani, A.; Azimi, M.; Deng, A.; Taheri, A. A Simplified Method for Determination of the Soil—Water Characteristic Curve Variables. Int. J. Geotech. Eng. 2017, 1–10. [CrossRef]
Zhai, Q.; Rahardjo, H. Quanti Fi Cation of Uncertainties in Soil—Water Characteristic Curve Associated with Fi Tting Parameters. Eng. Geol. 2013, 163, 144–152. [CrossRef]
Barbour, S.L. Nineteenth Canadian Geotechnical Colloquium: The Soil-Water Characteristic Curve: A Historical Perspective. Can. J. Geotech 1998, 35, 873–894. [CrossRef]
Assouline, S.; Tessier, D. A Conceptual Model of the Soil Water Retention Curve. Water Resour. Res 1998, 34, 223–231. [CrossRef]
Gallage, C.P.K.; Uchimura, T. Effects of Dry Density and Grain Size Distribution on Soil-Water Characteristic Curves of Sandy Soils. Soil Found. 2010, 50, 161–172. [CrossRef]
Wang, Z.; Wu, L.; Wu, Q.J. Water-Entry Value as an Alternative Indicator of Soil Water-Repellency and Wettability. J. Hydrol. 2000, 231–232, 76–83. [CrossRef]
Seki, K.; Ackerer, P.; Lehmann, F. Geoderma Sequential Estimation of Hydraulic Parameters in Layered Soil Using Limited Data. Geoderma 2015, 247–248, 117–128. [CrossRef]
Yates, M.V. Measurement of Virus and Indicator Survival and Transport in the Subsurface; American Water Works Association: Denver, CO, USA, 2000.
Mazzacavallo, M.G.; Kulmatiski, A. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence. PLoS ONE 2015, 10, e0144300. [CrossRef] [PubMed]
Schaap, M.G.; Leij, F.J.; Van Genuchten, M.T. Rosetta: A Computer Program for Estimating Soil Hydraulic Parameters with Hierarchical Pedotransfer Functions. J. Hydrol. 2001, 251, 163–176. [CrossRef]
Gutmann, E.D.; Small, E.E. A Comparison of Land Surface Model Soil Hydraulic Properties Estimated by Inverse Modeling and Pedotransfer Functions. Water Resour. Res. 2007, 43, 1–13. [CrossRef]
Levenberg, K. A Method for the Solution of Certain Problems in Leaset Squares. Q. Appl. Math. 1944, 2, 164–168. [CrossRef]
Vrugt, J.A.; van Wijk, M.T.; Hopmans, J.W. One-, Two-, and Three-Dimensional Root Water Uptake Functions for Transient Modeling. Water Resour. Res 2001, 37, 2457–2470. [CrossRef]
Šimůnek, J.; van Genuchten, M.T.; Wendroth, O. Parameter Estimation Analysis of the Evaporation Method for Determining Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 1998, 62, 894–905. [CrossRef]
Krause, P.; Boyle, D.P. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [CrossRef]
Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Quidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [CrossRef]
Autovino, D.; Rallo, G.; Provenzano, G. Predicting Soil and Plant Water Status Dynamic in Olive Orchards under Different Irrigation Systems with Hydrus-2D: Model Performance and Scenario Analysis. Agric. Water Manag. 2018, 203, 225–235. [CrossRef]
Jiang, J.; Feng, S.; Ma, J.; Huo, Z.; Zhang, C. Field Crops Research Irrigation Management for Spring Maize Grown on Saline Soil Based on SWAP Model. F. Crop. Res. 2016, 196, 85–97. [CrossRef]
Nobuhiro, T.; Shimizu, A.; Kabeya, N.; Tamai, K.; Ito, E.; Araki, M.; Kubota, T.; Tsuboyama, Y.; Chann, S. Advanced Bash-Scripting Guide An in-Depth Exploration of the Art of Shell Scripting Table of Contents. Hydrol. Process. 2010, 22, 2267–2274.
Schwartz, R.C.; Evett, S.R. Conjunctive Use of Tension Infiltrometry and Time-Domain Reflectometry for Inverse Estimation of Soil Hydraulic Properties. Vadose Zone J. 2003, 2, 530–538. [CrossRef]
Abbasi, F.; Simunek, J.; Feyen, J.; Shouse, P.J. Simulataneous Inverse Estimation of Soil Hydraulic and Solute Transport Parameters from Transient Field Experiments: Homogeneous Soil. Am. Soc. Agric. Eng. 2003, 46, 1085–1095.
Yoon, Y.; Kim, J.; Hyun, S. Estimating Soil Water Retention in a Selected Range of Soil Pores Using Tension Disc Infiltrometer Data. Soil Tillage Res. 2007, 97, 107–116. [CrossRef]
March, P. Comparison of Tension Infiltrometer, Pressure Infiltrometer, and Soil Core Estimates of Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 2000, 64, 478–484.
Roulier, Â.; Angulo-jaramillo, R.; Vandervaere, J.; Thony, J.; Gaudet, J.; Vauclin, M. Field Measurement of Soil Surface Hydraulic Properties by Disc and Ring Infiltrometers: A Review and Recent Developments. Soil Tillage Res. 2000, 55, 1–29.
Rezaei, M.; Seuntjens, P.; Shahidi, R.; Joris, I.; Boënne, W.; Al-barri, B.; Cornelis, W. The Relevance of In-Situ and Laboratory Characterization of Sandy Soil Hydraulic Properties for Soil Water Simulations. J. Hydrol. 2016, 534, 251–265. [CrossRef]
Kargas, G.; Soulis, K. Performance Analysis and Calibration of a New Low-Cost Capacitance Soil Moisture Sensor. J. Irrig. Drain. Eng. 2011, 138, 632–641. [CrossRef]
Hao, D.R.; Liao, H.J.; Ning, C.M.; Shan, X.P. The Microstructure and Soil-Water Characteristic of Unsaturated Loess. In Unsaturated Soil Mechanics—From Theory to Practice, Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils, Guilin, China, 23–26 October 2015; Taylor & Francis Group: London, UK, 2015; pp. 163–167.
Konyai, S.; Sriboonlue, V.; Trelo-Ges, V. The Effect of Air Entry Values on Hysteresis of Water Retention Curve in Saline Soil. Am. J. Environ. Sci. 2009, 5, 341–345. [CrossRef]
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.