Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in Peltigera section Peltigera (lichenized Ascomycota: Lecanoromycetes)
[en] This comprehensive phylogenetic revision of sections Peltigera and Retifoveatae of the cyanolichen genus Peltigera is based on DNA sequences from more than 500 specimens from five continents. We amplified five loci (nrITS, β-tubulin and three intergenic spacers part of colinear orthologous regions [COR]) for the mycobiont, and the rbcLX locus for the cyanobacterial partner Nostoc. Phylogenetic inferences (RAxML, BEAST) and species delimitation methods (bGMYC, bPTP, bPP) suggest the presence of 88 species in section Peltigera, including 50 species new to science, hence uncovering a surprisingly high proportion of previously unnoticed biodiversity. The hypervariable region in ITS1 (ITS1-HR) is a powerful marker to identify species within sections Peltigera and Retifoveatae. Most newly delimited species are restricted to a single biogeographic region, however, up to ten species have a nearly cosmopolitan distribution. The specificity of mycobionts in their association with Nostoc cyanobionts ranges from strict specialists (associate with only one Nostoc phylogroup) to broad generalists (up to eight Nostoc phylogroups uncovered), with widespread species recruiting a broader selection of Nostoc phylogroups than species with limited distributions. In contrast, species from the P. didactyla clade characterized by small thalli and asexual vegetative propagules (soredia) associate with fewer Nostoc phylogroups (i.e., are more specialized) despite their broad distributions, and show significantly higher rates of nucleotide substitutions.
Magain, Nicolas ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Truong, Camille; Universidad Nacional Autónoma de México - UNAM
Goward, Trevor; University of British Columbia - UBC
Niu, Dongling; Ningxia University
Goffinet, Bernard; University of Connecticut - UCONN
Sérusiaux, Emmanuël ; Université de Liège - ULiège > Département de Biologie, Ecologie et Evolution > Biologie de l'évolution et de la conservation - aCREA-Ulg
Vitikainen, Orvo; Finnish Museum of Natural History
Lutzoni, François; Duke University
Miadlikowska, Jolanta; Duke University
Language :
English
Title :
Species delimitation at a global scale reveals high species richness with complex biogeography and patterns of symbiont association in Peltigera section Peltigera (lichenized Ascomycota: Lecanoromycetes)
Publication date :
October 2018
Journal title :
Taxon
ISSN :
0040-0262
eISSN :
1996-8175
Publisher :
International Association for Plant Taxonomy, Austria
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. 2014. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Computat. Biol. 10: e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Brodo, I., Sharnoff, S.D. & Sharnoff, S. 2001. Lichens of North America. New Haven: Yale University Press.
Carstens, B.C., Pelletier, T.A., Reid, N.M. & Satler, J.D. 2013. How to fail at species delimitation. Molec. Ecol. 22: 4369–4383. https://doi.org/10.1111/mec.12413
Chagnon, P.-L., Magain, N., Miadlikowska, J. & Lutzoni, F. 2018. Strong specificity and network modularity at a very fine phylogenetic scale in the lichen genus Peltigera. Oecologia 187: 167–182. https://doi.org/10.1016/j.ympev.2014.04.003
Coddington, J.A., Agnarsson, I., Miller, J.A., Kuntner, M. & Hormiga, G. 2009. Undersampling bias: The null hypothesis for singleton species in tropical arthropod surveys. J. Anim. Ecol. 78: 573–584. https://doi.org/10.1111/j.1365-2656.2009.01525.x
Dal Grande, F., Widmer, I., Wagner, H. & Scheidegger, C. 2012. Vertical and horizontal photobiont transmission within populations of a lichen symbiosis. Molec. Ecol. 21: 3159–3172. https://doi.org/10.1111/j.1365-294X.2012.05482.x
Darnajoux, R., Lutzoni, F., Miadlikowska, J. & Bellenger, J.-P. 2015. Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic areas in Canada. Sci. Total Environm. 533: 1–7. https://doi.org/10.1016/j.scitotenv.2015.06.030
Darnajoux, R., Zhang, X., McRose, D.L., Miadlikowska, J., Lutzoni, F., Kraepiel, A.M.L. & Bellenger, J.-P. 2017. Biological nitrogen fixation by alternative nitrogenases in boreal cyanolichens: Importance of molybdenum availability and implications for current biological nitrogen fixation estimates. New Phytol. 213: 680–689. https://doi.org/10.1111/nph.14166
Del-Prado, R., Blanco, O., Lumbsch, H.T., Divakar, P.K., Elix, J., Molina, M.C. & Crespo, A. 2013. Molecular phylogeny and historical biogeography of the lichen-forming fungal genus Flavoparmelia (Ascomycota: Parmeliaceae). Taxon 62: 928–939. https://doi.org/10.12705/625.22
Díaz, E.M., Vicente-Manzanares, M., Sacristan, M., Vicente, C. & Legaz, M.E. 2011. Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton. Pl. Signal. Behav. 6: 1525–1536. https://doi.org/10.4161/psb.6.10.16687
Dodge, C.W. 1968. Lichenological notes on the f lora of the Antarctic Continent and the subantarctic islands. VII and VIII. Nova Hedwigia: 15: 285–332.
Drummond, A.J. & Rambaut, A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. B. M. C. Evol. Biol. 7: 214. https://doi. org/10.1186/1471-2148-7-214
Fernández‐Mendoza, F., Domaschke, S., García, M.A., Jordan, P., Martín, M.P. & Printzen, C. 2011. Population structure of mycobionts and photobionts of the widespread lichen Cetraria aculeata. Molec. Ecol. 20: 1208–1232. https://doi. org/10.1111/j.1365-294X.2010.04993.x
Fujisawa, T. & Barraclough, T.G. 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62: 707–724. https://doi.org/10.1093/sysbio/syt033
Gardes, M. & Bruns, T.D. 1993. ITS primers with enhanced specificity for basidiomycetes‐application to the identification of mycorrhizae and rusts. Molec. Ecol. 2: 113–118.
Gaya, E., Högnabba, F., Holguin, Á., Molnar, K., Fernández-Brime, S., Stenroos, S., Arup, U., Søchting, U., Van den Boom, P., Lücking, R. Sipman, H.J.M. & Lutzoni, F. 2012. Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota). Molec. Phylogen. Evol. 63: 374–387.
GeneCodes 2000. Sequencher, version 4.1, DNA sequence analysis software. Ann Arbor: Gene Codes Corporation. https://www.gene-codes.com/sequencher
Glass, N.L. & Donaldson, G.C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environm. Microbiol. 61: 1323–1330.
Goffinet, B. & Hastings, R.I. 1995. Two new sorediate taxa of Peltigera. Lichenologist 27: 43–58. https://doi.org/10.1006/lich.1995.0004
Goffinet, B., Miadlikowska, J. & Goward, T. 2003. Phylogenetic inferences based on nrDNA sequences support five morphospecies within the Peltigera didactyla complex (lichenized Ascomycota). Bryologist 106: 349–364. https://doi.org/10.1639/01
Goward, T., Goffinet, B. & Vitikainen, O. 1995. Synopsis of the genus Peltigera (lichenized Ascomycetes) in British Columbia, with a key to the North American species. Canad. J. Bot. 73: 91–111. https://doi.org/10.1139/b95-012
Haas, J.R., Bailey, E.H. & Purvis, O.W. 1998. Bioaccumulation of metals by lichens: uptake of aqueous uranium by Peltigera membranacea as a function of time and pH. Amer. Mineral. 83: 1494–1502.
Han, L.-F., Zhang, Y.-Y. & Guo, S.-Y. 2013. Peltigera wulingensis, a new lichen (Ascomycota) from north China. Lichenologist 45: 329–336. https://doi.org/10.1017/S0024282912000837
Han, L.-F., Zheng, T.-X. & Guo, S.-Y. 2015. A new species in the lichen genus Peltigera from northern China based on morphology and DNA sequence data. Bryologist 118: 46–53. https://doi. org/10.1639/0007-2745-118.1.046
Henriksson, E. & Pearson, L. 1981. Nitrogen fixation rate and chlorophyll content of the lichen Peltigera canina exposed to sulfur dioxide. Amer. J. Bot. 68: 680–684. https://doi.org/10.1002/j.1537-2197.1981. tb12400.x
Higgins, N.F. & Crittenden, P.D. 2015. Phytase activity in lichens. New Phytol. 208: 544–554. https://doi.org/10.1111/nph.13454
Holtan-Hartwig, J. 1993. The lichen genus Peltigera, exclusive of the P. canina group, in Norway. Sommerfeltia 15: 1–77. https://doi. org/10.1017/S0024282994000150
Huelsenbeck, J.P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.
Jüriado, I., Kaasalainen, U. & Rikkinen, J. 2017. Specialist taxa restricted to threatened habitats contribute significantly to the regional diversity of Peltigera (Lecanoromycetes, Ascomycota) in Estonia. Fungal Ecol. 30: 76–87. https://doi.org/10.1016/j. funeco.2017.08.004
Landis, M.J., Matzke, N.J., Moore, B.R. & Huelsenbeck, J.P. 2013. Bayesian analysis of biogeography when the number of areas is large. Syst. Biol. 62: 789–804. https://doi.org/10.1093/sysbio/syt040
Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molec. Biol. Evol. 29: 1695–1701. https://doi.org/10.1093/molbev/mss020
Leavitt, S.D., Fankhauser, J.D., Leavitt, D.H., Porter, L.D., Johnson, L.A. & Clair, L.L. 2011. Complex patterns of speciation in cosmopolitan “rock posy” lichens—Discovering and delimiting cryptic fungal species in the lichen-forming Rhizoplaca melanophthalma species-complex (Lecanoraceae, Ascomycota). Molec. Phylogen. Evol. 59: 587–602. https://doi.org/10.1016/j.ympev.2011.03.020
Leavitt, S.D., Esslinger, T.L., Spribille, T., Divakar, P.K. & Lumbsch, H.T. 2013. Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): Insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Molec. Phylogen. Evol. 66: 138–152. https://doi.org/10.1016/j.ympev.2012.09.013
Leavitt, S.D., Kraichak, E., Nelsen, M.P., Altermann, S., Divakar, P.K., Alors, D., Esslinger, T.L., Crespo, A. & Lumbsch, T. 2015. Fungal specificity and selectivity for algae play a major role in determining lichen partnerships across diverse ecogeographic regions in the lichen‐forming family Parmeliaceae (Ascomycota). Molec. Ecol. 24: 3779–3797. https://doi.org/10.1111/mec.13271
Lehr, H., Fleminger, G. & Galun, M. 1995. Lectin from the lichen Peltigera membranacea (Ach.) Nyl.: Characterization and function. Symbiosis 18: 1–13.
Lewis, L.R., Rozzi, R. & Goffinet, B. 2014. Direct long‐distance dispersal shapes a New World amphitropical disjunction in the dis-persal‐limited dung moss Tetraplodon (Bryopsida: Splachnaceae). J. Biogeogr. 41: 2385–2395. https://doi.org/10.1111/jbi.12385
Li, L.-A. & Tabita, F.R. 1997. Maximum activity of recombinant ribulose 1, 5-bisphosphate carboxylase/oxygenase of Anabaena sp. strain CA requires the product of the rbcX gene. J. Bacteriol. 179: 3793–3796.
Linnaeus, C. 1753. Species plantarum, vol. 2. Holmiae [Stockholm]: impensis Laurentii Salvii. https://doi.org/10.5962/bhl.title.669
Lu, J., Magain, N., Miadlikowska, J., Coyle, J., Truong, C. & Lutzoni, F. 2018. Bioclimatic factors at an intrabiome scale are more limiting than cyanobiont availability for the lichen-forming genus Peltigera. Amer. J. Bot. 105: 1198–1211.
Lücking, R., Dal-Forno, M., Sikaroodi, M., Gillevet, P.M., Bungartz, F., Moncada, B., Yánez-Ayabaca, A., Chaves, J.L., Coca, L.F. & Lawrey, J.D. 2014a. A single macrolichen constitutes hundreds of unrecognized species. Proc. Natl. Acad. Sci. U.S.A. 111: 11091–11096. https://doi.org/10.1073/pnas.1403517111
Lücking, R., Johnston, M.K., Aptroot, A., Kraichak, E., Lendemer, J.C., Boonpragob, K., Caceres, M.E., Ertz, D., Ferraro, L.I., Jia, Z.F. & Kalb, K. 2014b. One hundred and seventy-five new species of Graphidaceae: Closing the gap or a drop in the bucket? Phytotaxa 189: 7–38.
Lücking, R., Moncada, B., McCune, B., Farkas, E., Goffinet, B., Parker, D., Chaves, J.L., Lőkös, L., Nelson, P.R., Spribille, T. & Stenroos, S. 2017. Pseudocyphellaria crocata (Ascomycota: Lobariaceae) in the Americas is revealed to be thirteen species, and none of them is P. crocata. Bryologist 120: 441–500. https://doi.org/10.1639/0007-2745-120.4.14
Lumbsch, H.T. & Leavitt, S.D. 2011. Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity 50: 59–72.
Lumbsch, H.T., Hipp, A.L., Divakar, P.K., Blanco, O. & Crespo, A. 2008. Accelerated evolutionary rates in tropical and oceanic parmelioid lichens (Ascomycota). B. M. C. Evol. Biol. 8: 257. https://doi.org/10.1186/1471-2148-8-257
Lutzoni, F., Wagner, P., Reeb, V. & Zoller, S. 2000. Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. Syst. Biol. 49: 628–651.
Maddison, D.R. & Maddison, W.P. 2005. MacClade 4: Analysis of phylogeny and character evolution, version 4.08 a. https://macclade.org/macclade.html
Maddison, W.P. & Maddison, D.R. 2015. Mesquite: A modular system for evolutionary analysis, version 3.11. https://www. mesquiteproject.org/
Magain, N. 2018. PLexus, a PERL package to handle DNA matrices. Available from the author. https://github.com/NicolasMagain/PLexus
Magain, N. & Sérusiaux, E. 2014. Do photobiont switch and cephalodia emancipation act as evolutionary drivers in the lichen symbiosis? A case study in the Pannariaceae (Peltigerales). PLOS ONE 9: e89876. https://doi.org/10.1371/journal.pone.0089876
Magain, N., Miadlikowska, J., Goffinet, B., Sérusiaux, E. & Lutzoni, F. 2017a Macroevolution of specificity in cyanolichens of the genus Peltigera section Polydactylon (Lecanoromycetes, Ascomycota). Syst. Biol. 66: 74–99. https://doi.org/10.1093/sysbio/syw065
Magain, N., Miadlikowska, J., Mueller, O., Gajdeczka, M., Truong, C., Salamov, A.A., Dubchak, I., Grigoriev, I.V., Goffinet, B., Sérusiaux, E. & Lutzoni, F. 2017b Conserved genomic collinearity as a source of broadly applicable, fast evolving, markers to resolve species complexes: A case study using the lichen-forming genus Peltigera section Polydactylon. Molec. Phylogen. Evol. 117: 10–29. https://doi.org/10.1016/j.ympev.2017.08.013
Manoharan, S.S., Miao, V.P. & Andrésson, Ó.S. 2012. LEC-2, a highly variable lectin in the lichen Peltigera membranacea. Symbiosis 58: 91–98. https://doi.org/10.1007/s13199-012-0206-y
Manoharan-Basil, S.S., Miadlikowska, J., Goward, T., Andresson, O.S. & Vivian, P.W. 2016. Peltigera islandica, a new cyanolichen species in section Peltigera. Lichenologist 48: 451–467. https://doi. org/10.1017/S0024282916000414
Martin, A.P. & Palumbi, S.R. 1993. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl. Acad. Sci. U.S.A. 90: 4087–4091. https://doi.org/10.1073/pnas.90.9.4087
Martínez, I., Burgaz, A.R., Vitikainen, O. & Escudero, A. 2003. Distribution patterns in the genus Peltigera Willd. Lichenologist 35: 301–323. https://doi.org/10.1016/S0024-2829(03)00041-0
Mason-Gamer, R.J. & Kellogg, E.A. 1996. Testing for phylogenetic conflict among molecular data sets in the tribe Triticeae (Gramineae). Syst. Biol. 45: 524–545. https://doi.org/10.1093/sysbio/45.4.524
Matzke, N.J. 2013a. BioGeoBEARS: Biogeography with Bayesian (and likelihood) evolutionary analysis in R scripts. R package, version 0.21. https://phylo.wikidot.com/biogeobears
Matzke, N.J. 2013b. Probabilistic historical biogeography: New models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers Biogeogr. 5: 242–248. https://escholarship.org/uc/item/44j7n141
Matzke, N.J. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst. Biol. 63: 951–970. https://doi.org/10.1093/sysbio/syu056
Melián, C.J., Alonso, D., Allesina, S., Condit, R.S. & Etienne, R.S. 2012. Does sex speed up evolutionary rate and increase biodiversity? PLOS Computat. Biol. 6: e1002414. https://doi.org/10.1371/journal.pcbi.1002414
Miadlikowska, J. & Lutzoni, F. 2000. Phylogenetic revision of the genus Peltigera (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int. J. Pl. Sci. 161: 925–958. https://doi.org/10.1086/317568
Miadlikowska, J., Lutzoni, F., Goward, T., Zoller, S. & Posada, D. 2003. New approach to an old problem: Incorporating signal from gap-rich regions of ITS and rDNA large subunit into phylogenetic analyses to resolve the Peltigera canina species complex. Mycologia 95: 1181–1203. https://doi.org/10.2307/3761919
Miadlikowska, J., Richardson, D., Magain, N., Ball, B., Anderson, F., Cameron, R., Lendemer, J., Truong, C. & Lutzoni, F. 2014a. Phylogenetic placement, species delimitation, and cyanobiont identity of endangered aquatic Peltigera species (lichen-forming Ascomycota, Lecanoromycetes). Amer. J. Bot. 101: 1141–1156. https://doi.org/10.3732/ajb.1400267
Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J.C., Molnár, K., Fraker, E., Gaya, E., Hafellner, J., Hofstetter, V., Gueidan, C., Otálora, M.A.G., Hodkinson, B., Kukwa, M., Lücking, R., Björk, C., Sipman, H.J.M., Burgaz, A.R., Thell, A., Passo, A., Myllys, L., Goward, T., Fernández-Brime, S., Hestmark, G., Lendemer, J., Lumbsch, H.T., Schmull, M., Schoch, C.L., Sérusiaux, E., Maddison, D.R., Arnold, A.E., Stenroos, S. & Lutzoni, F. 2014b. Multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 312 genera and 66 families. Molec. Phylogen. Evol. 79: 132–168. https://doi.org/10.1016/j.ympev.2014.04.003
Miao, V., Rabenau, A. & Lee, A. 1997. Cultural and molecular characterization of photobionts of Peltigera membranacea. Lichenologist 29: 571–586.
Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Pp. 45–52 in: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 Nov 2010. Piscataway: IEEE.
Moncada, B., Lücking, R. & Suárez, A. 2014a. Molecular phylogeny of the genus Sticta (lichenized Ascomycota: Lobariaceae) in Colombia. Fungal Diversity 64: 205–231. https://doi.org/10.1007/s13225-013-0230-0
Moncada, B., Reidy, B. & Lücking, R. 2014b. A phylogenetic revision of Hawaiian Pseudocyphellaria sensu lato (lichenized Ascomycota: Lobariaceae) reveals eight new species and a high degree of inferred endemism. Bryologist 117: 119–160. https://doi. org/10.1639/0007-2745-117.2.119
Nylander, J.A.A. 2004. MrModeltest, version 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html
Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L. & Swofford, D.L. 2008. AWTY (are we there yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583. https://doi.org/10.1093/bioinformatics/btm388
O’Brien, H.E., Miadlikowska, J. & Lutzoni, F. 2005. Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur. J. Phycol. 40: 363–378. https://doi.org/10.1080/09670260500342647
O’Brien, H.E., Miadlikowska, J. & Lutzoni, F. 2009. Assessing reproductive isolation in highly diverse communities of the lichen-forming fungal genus Peltigera. Evolution 63: 2076–2086. https://doi.org/10.1111/j.1558-5646.2009.00685.x
O’Brien, H.E., Miadlikowska, J. & Lutzoni, F. 2013. Assessing population structure and host specialization in lichenized cyanobacteria. New Phytol. 198: 557–566. https://doi.org/10.1111/nph.12165
O’Donnell, K. & Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Molec. Phylogen. Evol. 7: 103–116. https://doi. org/10.1006/mpev.1996.0376
Otálora, M.A., Martínez, I., O’Brien, H., Molina, M.C., Aragón, G. & Lutzoni, F. 2010. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Molec. Phylogen. Evol. 56: 1089–1095. https://doi.org/10.1016/j.ympev.2010.05.013
Otálora, M.A., Aragón, G., Martínez, I. & Wedin, M. 2013a. Cardinal characters on a slippery slope—A re-evaluation of phylogeny, character evolution, and evolutionary rates in the jelly lichens (Collemataceae s. str). Molec. Phylogen. Evol. 68: 185–198. https://doi.org/10.1016/j.ympev.2013.04.004
Otálora, M.A., Salvador, C., Martínez, I. & Aragón, G. 2013b. Does the reproductive strategy affect the transmission and genetic diversity of bionts in cyanolichens? A case study using two closely related species. Microbial Ecol. 65: 517–530. https://doi.org/10.1007/s00248-012-0136-5
Pardo-De la Hoz, C., Magain, N., Lutzoni, F., Goward, T., Restrepo, S. & Miadlikowska, J. In press. Contrasting symbiotic patterns in two closely related lineages of trimembered lichens of the genus Peltigera. Frontiers Microbiol.
Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55: 595–609.
Rambaut, A. & Drummond, A. 2007. Tracer, version 1.5. http://beast. bio.ed.ac.uk
Ree, R.H. & Sanmartín, I. 2018. Conceptual and statistical problems with the DEC+ J model of founder‐event speciation and its comparison with DEC via model selection. J. Biogeogr. 45: 741–749. https://doi.org/10.1111/jbi.13173
Ree, R.H. & Smith, S.A. 2008. Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogen-esis. Syst. Biol. 57: 4–14. https://doi.org/10.1080/10635150701883881
Reeb, V., Lutzoni, F. & Roux, C. 2004. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. Molec. Phylogen. Evol. 32: 1036–1060. https://doi.org/10.1016/j.ympev.2004.04.012
Reid, N.M. & Carstens, B.C. 2012. Phylogenetic estimation error can decrease the accuracy of species delimitation: A Bayesian implementation of the general mixed Yule-coalescent model. B. M. C. Evol. Biol. 12: 196.
Rodriguez, F., Oliver, J.L., Marin, A. & Medina, J.R. 1990. The general stochastic model of nucleotide substitution. J. Theor. Biol. 142: 485–501.
Ronquist, F. 1997. Dispersal-vicariance analysis: A new approach to the quantification of historical biogeography. Syst. Biol. 46: 195–203. https://doi.org/10.1093/sysbio/46.1.195
Ronquist, F. & Sanmartín, I. 2011. Phylogenetic methods in biogeography. Annual Rev. Ecol. Evol. Syst. 42: 441–464. https://doi. org/10.1146/annurev-ecolsys-102209-144710
Rudi, K., Skulberg, O.M. & Jakobsen, K.S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180: 3453–3461.
Rydholm, C., Szakacs, G. & Lutzoni, F. 2006. Low genetic variation and no detectable population structure in Aspergillus fumigatus compared to closely related Neosartorya species. Eukar. Cell 5: 650–657. https://doi.org/10.1128/EC.5.4.650-657.2006
Schneider, K., Resl, P. & Spribille, T. 2016. Escape from the cryptic species trap: Lichen evolution on both sides of a cyanobacterial acquisition event. Molec. Ecol. 25: 3453–3468. https://doi.org/10.1111/mec.13636
Sérusiaux, E., Goffinet, B., Miadlikowska, J. & Vitikainen, O. 2009. Taxonomy, phylogeny and biogeography of the lichen genus Peltigera in Papua New Guinea. Fungal Diversity 38: 185–224.
Simon, A., Goffinet, B., Magain, N. & Sérusiaux, E. 2018. High diversity, high insular endemism and recent origin in the lichen genus Sticta (lichenized Ascomycota, Peltigerales) in Madagascar and the Mascarenes. Molec. Phylogen. Evol. 122: 15–28. https://doi.org/10.1016/j.ympev.2018.01.012
Simpson, E.H. 1949. Measurement of diversity. Nature 163: 688. doi:10.1038/163688a0
Singh, G., Dal Grande, F., Divakar, P.K., Otte, J., Leavitt, S.D., Szczepanska, K., Krespo, A., Rico, V.J., Aptroot, A., Cáceres, M.E., Lumbsch, H.T. & Schmitt, I. 2015. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLOS ONE 10: e0124625. https://doi.org/10.1371/journal.pone.0124625
M.E., Lumbsch, H.T. & Schmitt, I. 2015. Coalescent-based species delimitation approach uncovers high cryptic diversity in the cosmopolitan lichen-forming fungal genus Protoparmelia (Lecanorales, Ascomycota). PLOS ONE 10: e0124625. https://doi. org/10.1371/journal.pone.0124625
Singh, G., Dal Grande, F., Divakar, P.K., Otte, J., Crespo, A. & Schmitt, I. 2016. Fungal–algal association patterns in lichen symbiosis linked to macroclimate. New Phytol. 214: 317–329. https://doi.org/10.1111/nph.14366
Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
Stamatakis, A., Hoover, P. & Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57: 758–771. https://doi.org/10.1080/10635150802429642
Sukumaran, J. & Knowles, L.L. 2017. Multispecies coalescent delimits structure, not species. Proc. Natl. Acad. Sci. U.S.A. 114: 1607–1612. https://doi.org/10.1073/pnas.1607921114
Van Dam, M.H. & Matzke, N.J. 2016. Evaluating the influence of connectivity and distance on biogeographical patterns in the southwestern deserts of North America. J. Biogeogr. 43: 1514–1532. https://doi.org/10.1111/jbi.12727
Vázquez, D.P., Melián, C.J., Williams, N.M., Blüthgen, N., Krasnov, B.R. & Poulin, R. 2007. Species abundance and asymmetric interaction strength in ecological networks. Oikos 116: 1120–1127. https://doi.org/10.1111/j.0030-1299.2007.15828.x
Vitikainen, O. 1994. Taxonomic revision of Peltigera (lichenized Ascomycotina) in Europe. Acta Bot. Fenn. 152: 1–96.
Vitikainen, O. 1998. Taxonomic notes on neotropical species of Peltigera. Pp. 135–139 in: Marcelli, M.P. & Seaward, M.R.D. (eds), Lichenology in Latin America: History, current knowledge and applications. São Paulo: CETESB.
White, T.J., Bruns, T., Lee, S. & Taylor, J.L. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315–322 in: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (eds.), PCR protocols: A guide to methods and applications. San Diego: Academic Press.
Wornik, S. & Grube, M. 2010. Joint dispersal does not imply maintenance of partnerships in lichen symbioses. Microbial Ecol. 59: 150–157. https://doi.org/10.1007/s00248-009-9584-y Xavier, B.B., Miao, V.P., Jónsson, Z.O. & Andrésson, Ó.S. 2012. Mitochondrial genomes from the lichenized fungi Peltigera membranacea and Peltigera malacea: Features and phylogeny. Fungal Biol. 116: 802–814. https://doi.org/10.1016/j.funbio.2012.04.013
Yang, Z. 1997. PAML: A program package for phylogenetic analysis by maximum likelihood. Computer Applic. Biosci. 13: 555–556.
Yang, Z. & Rannala, B. 2010. Bayesian species delimitation using multilocus sequence data. Proc. Natl. Acad. Sci. U.S.A. 107: 9264– 9269. https://doi.org/10.1073/pnas.0913022107
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
Zolan, M. & Pukkila, P. 1986. Inheritance of DNA methylation in Coprinus cinereus. Molec. Cell. Biol. 6: 195–200.