Abrams, P.A. and Ginzburg, L.R. (2000) The nature of predation: Prey dependent, ratio dependent or neither? Trends Ecol. Evol. 15, 337-341 https://doi.org/10.1016/S0169-5347(00)01908-X
Bengtson, S. (2002) Origins and early evolution of predation. Paleontol. Soc. Pap. 8, 289-318 https://doi.org/10.1017/S1089332600001133
Jurkevitch, E. and Davidov, Y. (eds) (2006) Phylogenetic Diversity and Evolution of Predatory Prokaryotes. Springer, Berlin, Heidelberg
Kelley, P., Kowalewski, M. and Hansen, T.A. (eds) 2003. Predator-Prey Interactions in the Fossil Record, Vol. 20. Springer Science & Business Media
McFadden, G.I., Gilson, P.R., Hofmann, C.J.B., Adcock, G.J. and Maier, U.G. (1994) Evidence that an amoeba acquired a chloroplast by retaining part of an engulfed eukaryotic alga. Proc. Natl Acad. Sci. U.S.A. 91, 3690-3694 https://doi.org/10.1073/pnas.91.9.3690
De Duve, C. (1995) Vital Dust. In Life as a Cosmic Imperative. Basic Books, New York, 384 p.
Roger, A.J. (1999) Reconstructing early events in eukaryotic evolution. Am. Nat. 154, S146-S163 https://doi.org/10.1086/303290
Walther, B.T. (2000) Do life's three domains mirror the origins of sex? J. Biosci. 25, 217-220 https://doi.org/10.1007/BF02703927
Knoll, A.H. and Lahr, D.J. (2016) Fossils, feeding, and the evolution of complex multicellularity. In Multicellularity, Origins and Evolution, The Vienna Series in Theoretical Biology (Niklas, K.J., Newman, S. & Bonner, J.T., eds), pp. 1-16, Massachusetts Institute of Technology, Boston, MA
Butterfield, N.J. (1997) Plankton ecology and the Proterozoic-Phanerozoic transition. Paleobiology 23, 247-262 https://doi.org/10.1017/S009483730001681X
Knoll, A.H., Javaux, E.J., Hewitt, D. and Cohen, P. (2006) Eukaryotic organisms in Proterozoic oceans. Philos. Tran. R. Soc. B 361, 1023-1038 https://doi.org/10.1098/rstb.2006.1843
Cohen, P.A. and Macdonald, F.A. (2015) The Proterozoic record of eukaryotes. Paleobiology 41, 610-632 https://doi.org/10.1017/pab.2015.25
Anbar, A.D. and Knoll, A.H. (2002) Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297, 1137-1142 https://doi.org/10. 1126/science.1069651
Planavsky, N.J., Tarhan, L.G., Bellefroid, E.J., Evans, D.A., Reinhard, C.T., Love, G.D. et al. (2015) Late Proterozoic transitions in climate, oxygen, and tectonics, and the rise of complex life. Paleontol. Soc. Pap. 21, 47-82 https://doi.org/10.1017/S1089332600002965
Porter, S.M. (2016) Tiny vampires in ancient seas: Evidence for predation via perforation in fossils from the 780-740 million-year-old Chuar Group, Grand Canyon, USA. Proc. R. Soc. B 283, 20160221 https://doi.org/10.1098/rspb.2016.0221
Brocks, J.J., Jarrett, A.J.M., Sirantoine, E., Hallmann, C., Hoshino, Y. and Liyanage, T. (2017) The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578-581 https://doi.org/10.1038/nature23457
Javaux, E.J. (2011) Early eukaryotes in Precambrian oceans. In Origins and Evolution of Life: An Astrobiological Perspective (Gargaud, M., López-Garcìa, P. & Martin, H., eds), pp. 411-449, University Press, Cambridge, UK
Butterfield, N.J. (2000) Bangiomorpha pubescens n. gen., n. sp.: Implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386-404 https://doi.org/10.1666/0094-8373(2000)026<0386:BPNGNS>2.0.CO; 2
Gibson, T.M., Shih, P.M., Cumming, V.M., Fischer, W.W., Crockford, P.W., Hodgskiss, M.S.W. et al. (2018) Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135-138 https://doi.org/10.1130/G39829.1
Bengtson, S., Sallstedt, T., Belivanova, V. and Whitehouse, M. (2017) Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, e2000735 https://doi.org/10.1371/journal.pbio.2000735
Javaux, E.J. and Lepot, K. (2017) The Paleoproterozoic fossil record: Implications for the evolution of the biosphere during Earth's middle-age. Earth Sci. Rev. 176, 68-86 https://doi.org/10.1016/j.earscirev.2017.10.001
van Acken, D., Thomson, D., Rainbird, R.H. and Creaser, R.A. (2013) Constraining the depositional history of the Neoproterozoic Shaler Supergroup, Amundsen Basin, NW Canada: Rhenium-osmium dating of black shales from the Wynniatt and Boot Inlet Formations. Precambrian Res. 236, 124-131 https://doi.org/10.1016/j.precamres.2013.07.012
Rainbird, R.H., Rayner, N.M., Hadlari, T., Heaman, L.M., Ielpi, A., Turner, E.C. et al. (2017) Zircon provenance data record the lateral extent of pancontinental, early Neoproterozoic rivers and erosional unroofing history of the Grenville Orogen. Geol. Soc. Am. Bull. 129, 1408-1423 https://doi.org/10.1130/B31695.1
Butterfield, N.J., Knoll, A.H. and Swett, K. (1994) Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils Strata 34, 1-84 https://doi.org/10.1111/j.1502-3931.1994.tb01558.x
Rainbird, R.H., Jefferson, C.W. and Young, G.M. (1996) The early Neoproterozoic sedimentary Succession B of northwestern Laurentia: Correlations and paleogeographic significance. Geol. Soc. Am. Bull. 108, 454-470 https://doi.org/10.1130/0016-7606(1996)108<0454:TENSSB>2.3.CO; 2
Butterfield, N.J. and Rainbird, R.H. (1998) Diverse organic-walled fossils, including 'possible dinoflagellates, ' from the early Neoproterozoic of arctic Canada. Geology 26, 963-966 https://doi.org/10.1130/0091-7613(1998)026<0963:DOWFIP>2.3.CO; 2
Grey, K. (1999) A modified palynological preparation technique for the extraction of large Neoproterozoic acanthomorph acritarchs and other acid insoluble microfossils. Geol. Survey Western Australia Record 199, 1-23
Javaux, E.J., Knoll, A.H. and Walter, M.R. (2003) Recognizing and interpreting the fossils of early Eukaryotes. Orig. Life Evol. Bios. 33, 75-94 https://doi.org/10.1023/A:1023992712071
Riedman, L.A. and Porter, S.M. (2016) Organic-walled microfossils of the mid-Neoproterozoic Alinya Formation, Officer Basin, Australia. J. Paleontol. 40, 854-887 https://doi.org/10.1017/jpa.2016.49
Jankauskas, T.V. (1982) Microfossils from the Riphean of the Southern Urals. Stratotip rifeya: Paleontologiya, Paleomagnetizm 84-120 [in Russian]
Jankauskas, T.V., Mikhailova, N. and Hermann, T.N. (1989) Mikrofossilii dokembriya SSSR (Precambrian microfossils of the USSR). Leningrad, Trudy Instituta Geologii i Geochronologii Dokembria SSSR Akademii Nauk. Nauka [In Russian]
Porter, S.M. and Riedman, L.A. (2016) Systematics of organic-walled microfossils from the ca. 780-740 Ma Chuar Group, Grand Canyon, Arizona. J. Paleontol. 90, 815-853 https://doi.org/10.1017/jpa.2016.57
Naumova, S.N. (1949) Spores from the Lower Cambrian. Izvestiya Akademii Nauk SSSR, Seriya Geologicheskaya 1949. 4, 49-56
Timofeev, B.V. (1966) Micropaleophytological investigations of ancient formations. Nauka, Moscow, 1-237
Grey, K. and Willman, S. (2009) Taphonomy of Ediacaran Acritarchs from Australia: Significance for taxonomy and biostratigraphy. Palaios 24, 239-256 https://doi.org/10.2110/palo.2008.p08-020r
Akin, D.E. and Amos, H.E. (1975) Rumen bacterial degradation of forage cell walls investigated by electron microscopy. Appl. Microbiol. 29, 692-701 PMID:16350017
Holt, D.M. and Jones, E.B.G. (1983) Bacterial degradation of lignified wood cell walls in anaerobic aquatic habitats. Appl. Environ. Microbiol. 46, 722-727 PMID:6639026
Porter, S.M. (2011) The rise of predators. Geology 39, 607-608 https://doi.org/10.1130/focus062011.1
Knoll, A.H. (2014) Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 https://doi.org/10.1101/cshperspect.a016121
Loron, C. and Moczydłowska, M. (2017) Tonian (Neoproterozoic) eukaryotic and prokaryotic organic-walled microfossils from the upper Visingsö Group, Sweden. Palynology 42, 220-254 https://doi.org/10.1080/01916122.2017.1335656
Nagovitsin, K.E., Rogov, V.I., Marusin, V.V., Karlova, G.A., Kolesnikov, A.V., Bykova, N.V. et al. (2015) Revised Neoproterozoic and Terreneuvian stratigraphy of the Lena-Anabar Basin and north-western slope of the Olenek Uplift, Siberian Platform. Precambrian Res. 270, 226-245 https://doi.org/10.1016/j.precamres.2015.09.012
Pang, K., Tang, Q., Yuan, X.-L., Wan, B. and Xiao, S. (2015) A biomechanical analysis of the early eukaryotic fossil Valeria and new occurrence of organic-walled microfossils from the Paleo-Mesoproterozoic Ruyang Group. Palaeoworld 24, 251-262 https://doi.org/10.1016/j.palwor.2015.04.002
Hess, S., Sausen, N. and Melkonian, M. (2012) Shedding light on vampires: The phylogeny of vampyrellid amoebae revisited. PLoS ONE 7, e31165 https://doi.org/10.1371/journal.pone.0031165
Berney, C., Romac, S., Mahé, F., Santini, S., Siano, R. and Bass, D. (2013) Vampires in the oceans: Predatory cercozoan amoebae in marine habitats. ISME J. 7, 2387-2399 https://doi.org/10.1038/ismej.2013.116
Old, K. and Patrick, Z. (1976) Perforation and lysis of spores of Cochliobolus sativus and Thielaviopsis basicola in natural soils. Can. J. Bot. 54, 2798-2809 https://doi.org/10.1139/b76-299
Old, K. (1978) Fine structure of perforation of Cochliobolus sativus conidia by giant amoebae. Soil Biol. Biochem. 10, 509-516 https://doi.org/10.1016/0038-0717(78)90045-7
Homma, Y., Sitton, J.W., Cook, R.J. and Old, K.M. (1979) Perforation and destruction of pigmented hyphae of Gaeumannomyces graminis by vampyrellid ameobae from Pacific Northwest wheat field soil. Phytopathology 69, 1118-1122 https://doi.org/10.1094/Phyto-69-1118
Barron, G.L. (1977) The Nematode-Destroying Fungi. Canadian Biological Publications, Guelph, Canada https://trove.nla.gov.au/version/9854414
Thorn, R.G., Moncalvo, J.-M., Reddy, C.A. and Vilgalys, R. (2000) Phylogenetic analyses and the distribution of nematophagy support a monophyletic pleurotaceae within the polyphyletic pleurotoid-lentinoid fungi. Mycologia 92, 241-252 https://doi.org/10.2307/3761557
Javaux, E.J., Knoll, A.H. and Walter, M.R. (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66-69 https://doi.org/10.1038/35083562
Cott, H.B. (1940) Adaptive Coloration in Animals, Oxford Univ. Press, New York
Vermeij, G.J. (1994) The evolutionary interaction among species: Selection, escalation, and coevolution. Annu. Rev. Ecol. Syst. 25, 219-236 https://doi. org/10.1146/annurev.es.25.110194.001251
Cavalier-Smith, T. (2013) Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 49, 115-178 https://doi.org/10.1016/j.ejop.2012.06.001
Koumandou, V.L., Wickstead, B., Ginger, M.L., van der Giezen, M., Dacks J.B. and Field, M.C. (2013) Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373-396 https://doi.org/10.3109/10409238.2013.821444
Baludikay, B.K., Storme, J.-Y., François, C., Baudet, D. and Javaux, E.J. (2016) A diverse and exquisitely preserved organic-walled microfossil assemblage from the Meso-Neoproterozoic Mbuji-Mayi Supergroup (Democratic Republic of Congo) and implications for Proterozoic biostratigraphy. Precambrian Res. 281, 166-184 https://doi.org/10.1016/j.precamres.2016.05.017
Beghin, J., Storme, J.-Y., Blanpied, C., Gueneli, N., Brocks, J.J., Poulton, S.W. et al. (2017) Microfossils from the late Mesoproterozoic - early Neoproterozoic Atar/El Mreïti Group, Taoudeni Basin, Mauritania, northwestern Africa. Precambrian Res. 291, 63-82 https://doi.org/10.1016/j. precamres.2017.01.009
Martin, W.F., Tielens, A.G.M., Mentel, M., Garg, S.G. and Gould, S.B. (2017) The physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008-17 https://doi.org/10.1128/MMBR.00008-17
Yin, L.-m. (1998) Acanthomorphic Acritarchs from Meso-Neoproterozoic Shales of the Ruyang Group, Shanxi, China. Rev. Palaeobot. Palynol. 98, 15-25 https://doi.org/10.1016/S0034-6667(97)00022-5
Javaux, E.J. and Knoll, A.H. (2017) Micropaleontology of the lower Mesoproterozoic Roper Group, Australia, and implications for early eukaryotic evolution. J. Paleontol. 91, 199-229 https://doi.org/10.1017/jpa.2016.124
Eme, L., Sharpe, S.C., Brown, M.W. and Roger, A.J. (2014) On the age of Eukaryotes: Evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 https://doi.org/10.1101/cshperspect.a016139
Parfrey, L.W., Lahr, D.J.G., Knoll, A.H. and Katz, L.A. (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. U.S.A. 108, 13624-13629 https://doi.org/10.1073/pnas.1110633108
Sánchez-Baracaldo, P., Raven, J.A., Pisani, D. and Knoll, A.H. (2017) Early photosynthetic eukaryotes inhabited low-salinity habitats. Proc. Natl Acad. Sci. U.S.A. 114, 7737-7745 https://doi.org/10.1073/pnas.1620089114
Peng, Y., Bao, H. and Yuan, X. (2009) New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res. 168, 223-232 https://doi.org/10.1016/j.precamres.2008.10.005
Riedman, L.A. and Sadler, P.M. (In Press) Global species richness record and biostratigraphic potential of early to middle Neoproterozoic eukaryote fossils. Precambrian Res. Pusblished online in 2017, available at https://doi.org/10.1016/j.precamres.2017.10.008
Cohen, P.A., Strauss, J.V., Rooney, A.D., Sharma, M. and Tosca, N. (2017) Controlled hydroxyapatite biomineralization in an ∼810 million-year-old unicellular eukaryote. Sci. Adv. 3, e1700095 https://doi.org/10.1126/sciadv.1700095