Precipitation manipulation; Tree species richness; Sapling; Bacterial growth; Leucine incorporation; Birch effect
Abstract :
[en] In the context of future climate change, the flush of CO2 emissions from soils after drying-rewetting events could have a strong impact on the terrestrial carbon balance. Mixed forests may be more resistant and resilient to drought events compared to monocultures, and as such may modulate the effects of drought on soil functioning belowground. We investigated the influence of mixed planting and drought legacy on respiration and bacterial growth rates (3H Leucine incorporation) in response to drying-rewetting. Soils were sampled from a 7-year old tree diversity experiment (FORBIO), where oak (Quercus robur L.) trees admixed with one or three other tree species were subjected to ∼50% precipitation reduction for 2 years (“drought legacy”). Respiration increased immediately after rewetting, whereas bacterial growth only started after a distinct lag phase of ca. 7 h. A legacy of drought reduced bacterial growth and respiration rates upon rewetting, however tree species admixing did not modulate the drought legacy effect. Our results suggest that prolonged decrease in precipitation may lead to a reduced CO2 pulse upon drying-rewetting and admixing up to three tree species with oak in a young afforestation would not alleviate drought legacy effects on bacterial growth and respiration rates.
Bååth, E., Pettersson, M., Söderberg, K.H., Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biology and Biochemistry 33 (2001), 1571–1574, 10.1016/S0038-0717(01)00073-6.
Barnard, R.L., Osborne, C.A., Firestone, M.K., Changing precipitation pattern alters soil microbial community response to wet-up under a Mediterranean-type climate. The ISME Journal 9 (2015), 946–957, 10.1038/ismej.2014.192.
Barnard, R.L., Osborne, C.A., Firestone, M.K., Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. The ISME Journal 7 (2013), 2229–2241, 10.1038/ismej.2013.104.
Bates, D., Mächler, M., Bolker, B., Walker, S., Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67 (2015), 1–48, 10.18637/jss.v067.i01.
Birch, H.F., The effect of soil drying on humus decomposition and nitrogen availability. Plant and Soil 10 (1958), 9–31, 10.1007/BF01343734.
Brunel, C., Gros, R., Ziarelli, F., Farnet Da Silva, A.M., Additive or non-additive effect of mixing oak in pine stands on soil properties depends on the tree species in Mediterranean forests. The Science of the Total Environment 590–591 (2017), 676–685, 10.1016/J.SCITOTENV.2017.03.023.
Carnol, M., Bazgir, M., Nutrient return to the forest floor through litter and throughfall under 7 forest species after conversion from Norway spruce. Forest Ecology and Management 309 (2013), 66–75, 10.1016/j.foreco.2013.04.008.
Deng, Q., Zhang, D., Han, X., Chu, G., Zhang, Q., Hui, D., Changing rainfall frequency rather than drought rapidly alters annual soil respiration in a tropical forest. Soil Biology and Biochemistry 121 (2018), 8–15, 10.1016/J.SOILBIO.2018.02.023.
Evans, S.E., Wallenstein, M.D., Soil microbial community response to drying and rewetting stress: does historical precipitation regime matter?. Biogeochemistry 109 (2012), 101–116, 10.1007/s10533-011-9638-3.
Fierer, N., Schimel, J.P., Effects of drying–rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry 34 (2002), 777–787, 10.1016/S0038-0717(02)00007-X.
Forrester, D.I., Bauhus, J., A review of processes behind diversity—productivity relationships in forests. Current Forestry Reports 2 (2016), 45–61, 10.1007/s40725-016-0031-2.
Fuchslueger, L., Bahn, M., Fritz, K., Hasibeder, R., Richter, A., Experimental drought reduces the transfer of recently fixed plant carbon to soil microbes and alters the bacterial community composition in a mountain meadow. New Phytologist 201 (2014), 916–927, 10.1111/nph.12569.
Göransson, H., Godbold, D.L., Jones, D.L., Rousk, J., Bacterial growth and respiration responses upon rewetting dry forest soils: impact of drought-legacy. Soil Biology and Biochemistry 57 (2013), 477–486, 10.1016/j.soilbio.2012.08.031.
Grossiord, C., Granier, A., Ratcliffe, S., Bouriaud, O., Bruelheide, H., Checko, E., Forrester, D.I., Dawud, S.M., Finer, L., Pollastrini, M., Scherer-Lorenzen, M., Valladares, F., Bonal, D., Gessler, A., Tree diversity does not always improve resistance of forest ecosystems to drought. Proceedings of the National Academy of Sciences 111 (2014), 14812–14815, 10.1073/pnas.1411970111.
Gunina, A., Smith, A.R., Godbold, D.L., Jones, D.L., Kuzyakov, Y., Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil 412 (2017), 357–368, 10.1007/s11104-016-3073-0.
Hawkes, C.V., Keitt, T.H., Resilience vs. historical contingency in microbial responses to environmental change. Ecology Letters 18 (2015), 612–625, 10.1111/ele.12451.
Hawkes, C.V., Waring, B.G., Rocca, J.D., Kivlin, S.N., Historical climate controls soil respiration responses to current soil moisture. Proceedings of the National Academy of Sciences of the United States of America 114 (2017), 6322–6327, 10.1073/pnas.1620811114.
Heděnec, P., Singer, D., Li, J., Yao, M., Lin, Q., Li, H., Kukla, J., Cajthaml, T., Frouzc, J., Rui, J., Li, X., Effect of dry-rewetting stress on response pattern of soil prokaryotic communities in alpine meadow soil. Applied Soil Ecology 126 (2018), 98–106, 10.1016/J.APSOIL.2018.02.015.
Hicks, L.C., Rahman, M.M., Carnol, M., Verheyen, K., Rousk, J., The legacy of mixed planting and precipitation reduction treatments on soil microbial activity, biomass and community composition in a young tree plantation. Soil Biology and Biochemistry 124 (2018), 227–235, 10.1016/j.soilbio.2018.05.027.
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setälä H., Symstad, A.J., Vandermeer, J., Wardle, D.A., Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75 (2005), 3–35, 10.1890/04-0922.
Hothorn, T., Bretz, F., Westfall, P., Simultaneous inference in general parametric models. Biometrical Journal 50 (2008), 346–363, 10.1002/bimj.200810425.
Iovieno, P., Baath, E., Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiology Ecology 65 (2008), 400–407, 10.1111/j.1574-6941.2008.00524.x.
Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., Beierkuhnlein, C., Bezemer, T.M., Bonin, C., Bruelheide, H., de Luca, E., Ebeling, A., Griffin, J.N., Guo, Q., Hautier, Y., Hector, A., Jentsch, A., Kreyling, J., Lanta, V., Manning, P., Meyer, S.T., Mori, A.S., Naeem, S., Niklaus, P.A., Polley, H.W., Reich, P.B., Roscher, C., Seabloom, E.W., Smith, M.D., Thakur, M.P., Tilman, D., Tracy, B.F., van der Putten, W.H., van Ruijven, J., Weigelt, A., Weisser, W.W., Wilsey, B., Eisenhauer, N., Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526 (2015), 574–577, 10.1038/nature15374.
Jactel, H., Bauhus, J., Boberg, J., Bonal, D., Castagneyrol, B., Gardiner, B., Gonzalez-Olabarria, J.R., Koricheva, J., Meurisse, N., Brockerhoff, E.G., Tree diversity drives forest stand resistance to natural disturbances. Current Forestry Reports 3 (2017), 223–243, 10.1007/s40725-017-0064-1.
Jucker, T., Bouriaud, O., Avacaritei, D., Coomes, D.A., Stabilizing effects of diversity on aboveground wood production in forest ecosystems: linking patterns and processes. Ecology Letters 17 (2014), 1560–1569, 10.1111/ele.12382.
Khlifa, R., Paquette, A., Messier, C., Reich, P.B., Munson, A.D., Do temperate tree species diversity and identity influence soil microbial community function and composition?. Ecology and Evolution, 2017, 7965–7974, 10.1002/ece3.3313.
Kovats, R.S., Valentini, R., Bouwer, L.M., Georgopoulou, E., Jacob, D., Martin, E., Rounsevell A, M., Soussana, J.-F., Europe. Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S., Levy, A.N., MacCracken, S., Mastrandrea, P.R., White, L.L., (eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 2014, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1267–1326.
Kreyling, J., Dengler, J., Walter, J., Velev, N., Ugurlu, E., Sopotlieva, D., Ransijn, J., Picon-Cochard, C., Nijs, I., Hernandez, P., Güler, B., von Gillhaussen, P., De Boeck, H.J., Bloor, J.M.G., Berwaers, S., Beierkuhnlein, C., Arfin Khan, M.A.S., Apostolova, I., Altan, Y., Zeiter, M., Wellstein, C., Sternberg, M., Stampfli, A., Campetella, G., Bartha, S., Bahn, M., Jentsch, A., Species richness effects on grassland recovery from drought depend on community productivity in a multisite experiment. Ecology Letters 20 (2017), 1405–1413, 10.1111/ele.12848.
Kuznetsova, A., Brockhoff, P.B., Christensen, R.H.B., lmerTest: tests in linear mixed effect models. R Package, 1–19, 2016.
Lee, X., Wu, H.-J., Sigler, J., Oishi, C., Siccama, T., Rapid and transient response of soil respiration to rain. Global Change Biology 10 (2004), 1017–1026, 10.1111/j.1529-8817.2003.00787.x.
Luyssaert, S., Ciais, P., Piao, S.L., Schulze, E.-D., Jung, M., Zaehle, S., Schelhaas, M.J., Reichstein, M., Churkina, G., Papale, D., Abril, G., Beer, C., Grace, J., Loustau, D., Matteucci, G., Magnani, F., Nabuurs, G.J., Verbeeck, H., Sulkava, M., van der Werf, G.R., Janssens, I.A., The European carbon balance. Part 3: forests. Global Change Biology 16 (2010), 1429–1450, 10.1111/j.1365-2486.2009.02056.x.
Meisner, A., Bååth, E., Rousk, J., Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biology and Biochemistry 66 (2013), 188–192, 10.1016/j.soilbio.2013.07.014.
Meisner, A., Leizeaga, A., Rousk, J., Bååth, E., Partial drying accelerates bacterial growth recovery to rewetting. Soil Biology and Biochemistry 112 (2017), 269–276, 10.1016/j.soilbio.2017.05.016.
Meisner, A., Rousk, J., Bååth, E., Prolonged drought changes the bacterial growth response to rewetting. Soil Biology and Biochemistry 88 (2015), 314–322, 10.1016/j.soilbio.2015.06.002.
Metz, J., Annighöfer, P., Schall, P., Zimmermann, J., Kahl, T., Schulze, E.-D., Ammer, C., Site-adapted admixed tree species reduce drought susceptibility of mature European beech. Global Change Biology 22 (2016), 903–920, 10.1111/gcb.13113.
Mina, M., Huber, M.O., Forrester, D.I., Thürig, E., Rohner, B., Multiple factors modulate tree growth complementarity in Central European mixed forests. Journal of Ecology 106 (2018), 1106–1119, 10.1111/1365-2745.12846.
Morin, X., Fahse, L., Scherer-Lorenzen, M., Bugmann, H., Tree species richness promotes productivity in temperate forests through strong complementarity between species. Ecology Letters 14 (2011), 1211–1219, 10.1111/j.1461-0248.2011.01691.x.
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, Nlme: Linear and Nonlinear Mixed Effects Models. 2014, R package, 1–117 version 3.
Placella, S.A., Brodie, E.L., Firestone, M.K., Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proceedings of the National Academy of Sciences of the United States of America, 109, 2012, 10.1073/pnas.1204306109 10931–6.
Prescott, C.E., Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils?. Biogeochemistry 101 (2010), 133–149, 10.1007/s10533-010-9439-0.
Pretzsch, H., Schütze, G., Uhl, E., Resistance of European tree species to drought stress in mixed versus pure forests: evidence of stress release by inter-specific facilitation. Plant Biology 15 (2013), 483–495, 10.1111/j.1438-8677.2012.00670.x.
R Core Team, R: a Language and Environment for Statistical Computing. 2014.
Ratcliffe, S., Wirth, C., Jucker, T., van der Plas, F., Scherer-Lorenzen, M., Verheyen, K., Allan, E., Benavides, R., Bruelheide, H., Ohse, B., Paquette, A., Ampoorter, E., Bastias, C.C., Bauhus, J., Bonal, D., Bouriaud, O., Bussotti, F., Carnol, M., Castagneyrol, B., Chećko, E., Dawud, S.M., Wandeler, H. De, Domisch, T., Finér, L., Fischer, M., Fotelli, M., Gessler, A., Granier, A., Grossiord, C., Guyot, V., Haase, J., Hättenschwiler, S., Jactel, H., Jaroszewicz, B., Joly, F.X., Kambach, S., Kolb, S., Koricheva, J., Liebersgesell, M., Milligan, H., Müller, S., Muys, B., Nguyen, D., Nock, C., Pollastrini, M., Purschke, O., Radoglou, K., Raulund-Rasmussen, K., Roger, F., Ruiz-Benito, P., Seidl, R., Selvi, F., Seiferling, I., Stenlid, J., Valladares, F., Vesterdal, L., Baeten, L., Biodiversity and ecosystem functioning relations in European forests depend on environmental context. Ecology Letters 20 (2017), 1414–1426, 10.1111/ele.12849.
Rath, K.M., Maheshwari, A., Rousk, J., The impact of salinity on the microbial response to drying and rewetting in soil. Soil Biology and Biochemistry 108 (2017), 17–26, 10.1016/j.soilbio.2017.01.018.
Rivest, D., Paquette, A., Shipley, B., Reich, P.B., Messier, C., Tree communities rapidly alter soil microbial resistance and resilience to drought. Functional Ecology 29 (2015), 570–578, 10.1111/1365-2435.12364.
Rousk, J., Bååth, E., Growth of saprotrophic fungi and bacteria in soil. FEMS Microbiology Ecology 78 (2011), 17–30, 10.1111/j.1574-6941.2011.01106.x.
Salazar, A., Sulman, B.N., Dukes, J.S., Microbial dormancy promotes microbial biomass and respiration across pulses of drying-wetting stress. Soil Biology and Biochemistry 116 (2018), 237–244, 10.1016/j.soilbio.2017.10.017.
Scheibe, A., Steffens, C., Seven, J., Jacob, A., Hertel, D., Leuschner, C., Gleixner, G., Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology and Biochemistry 81 (2015), 219–227, 10.1016/j.soilbio.2014.11.020.
Scherer-Lorenzen, M., The functional role of biodiversity in the context of global change. David, A.C., David, F.R.B., William, D.S., (eds.) Forests and Global Change, 2014, Cambridge University Press, Cambridge, UK, 195–237.
Schimel, J., Balser, T.C., Wallenstein, M., Microbial stress-response physiology and its implications for ecosystem function. Ecology 88 (2007), 1386–1394, 10.1890/06-0219.
Stres, B., Philippot, L., Faganeli, J., Tiedje, J.M., Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment. FEMS Microbiology Ecology 74 (2010), 323–335, 10.1111/j.1574-6941.2010.00951.x.
Thion, C., Prosser, J.I., Differential response of nonadapted ammonia-oxidising archaea and bacteria to drying-rewetting stress. FEMS Microbiology Ecology 90 (2014), 380–389, 10.1111/1574-6941.12395.
Thoms, C., Gattinger, A., Jacob, M., Thomas, F.M., Gleixner, G., Direct and indirect effects of tree diversity drive soil microbial diversity in temperate deciduous forest. Soil Biology and Biochemistry 42 (2010), 1558–1565, 10.1016/j.soilbio.2010.05.030.
Ushio, M., Kitayama, K., Balser, T.C., Tree species-mediated spatial patchiness of the composition of microbial community and physicochemical properties in the topsoils of a tropical montane forest. Soil Biology and Biochemistry 42 (2010), 1588–1595, 10.1016/j.soilbio.2010.05.035.
Verheyen, K., Ceunen, K., Ampoorter, E., Baeten, L., Bosman, B., Branquart, E., Carnol, M., Wandeler, H. De, Grégoire, J.-C., Lhoir, P., Muys, B., Setiawan, N.N., Vanhellemont, M., Ponette, Q., Assessment of the functional role of tree diversity: the multi-site FORBIO experiment. Plant Ecology and Evolution 146 (2013), 26–35, 10.5091/plecevo.2013.803.
Verheyen, K., Vanhellemont, M., Auge, H., Baeten, L., Baraloto, C., Barsoum, N., Bilodeau-Gauthier, S., Bruelheide, H., Castagneyrol, B., Godbold, D., Haase, J., Hector, A., Jactel, H., Koricheva, J., Loreau, M., Mereu, S., Messier, C., Muys, B., Nolet, P., Paquette, A., Parker, J., Perring, M., Ponette, Q., Potvin, C., Reich, P., Smith, A., Weih, M., Scherer-Lorenzen, M., Contributions of a global network of tree diversity experiments to sustainable forest plantations. Ambio 45 (2016), 29–41, 10.1007/s13280-015-0685-1.
Zang, U., Goisser, M., Grams, T.E.E., Haberle, K.-H., Matyssek, R., Matzner, E., Borken, W., Fate of recently fixed carbon in European beech (Fagus sylvatica) saplings during drought and subsequent recovery. Tree Physiology 34 (2014), 29–38, 10.1093/treephys/tpt110.
Zwietering, M.H., Jongenburger, I., Rombouts, F.M., Van, A.K., Riet, T., Modeling of the bacterial growth curve. Applied and Environmental Microbiology 56 (1990), 1875–1881.