Su, D.S., Perathoner, S., Centi, G., Nanocarbons for the development of advanced catalysts. Chem. Rev. 113 (2013), 5782–5816.
Serp, P., Figueiredo, J.L., Carbon Materials for Catalysis. 2008, John Wiley and Sons.
Li, M., Xu, F., Li, H., Wang, Y., Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal. Sci. Technol. 6 (2016), 3670–3693.
Pérez-Cadenas, M., Moreno-Castilla, C., Carrasco-Marín, F., Pérez-Cadenas, A.F., Surface chemistry, porous texture, and morphology of N-doped carbon xerogels. Langmuir 25 (2009), 466–470.
Job, N., Heinrichs, B., Lambert, S., Pirard, J.P., Colomer, J.F., Vertruyen, B., Marien, J., Carbon xerogels as catalyst supports: study of mass transfer. AIChE J. 52 (2006), 2663–2676.
Tang, M., Deng, J., Li, M., Li, X., Li, H., Chen, Z., Wang, Y., 3D-interconnected hierarchical porous N-doped carbon supported ruthenium nanoparticles as an efficient catalyst for hydrogenation of Toluene and Quinoline. Green Chem. 18 (2016), 6082–6090.
Salinas-Torres, D., Shiraishi, S., Morallón, E., Cazorla-Amorós, D., Improvement of carbon materials performance by nitrogen functional groups in electrochemical capacitors in organic electrolyte at severe conditions. Carbon 82 (2015), 205–213.
He, L., Weniger, F., Neumann, H., Beller, M., Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew. Chemie - Int. Ed. 55 (2016), 12582–12594.
Wood, K.N., O'Hayre, R., Pylypenko, S., Recent progress on nitrogen/carbon structures designed for use in energy and sustainability applications. Energy Environ. Sci. 7 (2014), 1212–1249.
Podyacheva, O.Y., Lisitsyn, A.S., Kibis, L.S., Stadnichenko, A.I., Boronin, A.I., Slavinskaya, E.M., Stonkus, O.A., Yashnik, S.A., Ismagilov, Z.R., Influence of the nitrogen-doped carbon nanofibers on the catalytic properties of supported metal and oxide nanoparticles. Catal. Today 301 (2018), 125–133.
Jeon, M., Han, D.J., Lee, K.S., Choi, S.H., Han, J., Nam, S.W., Jang, S.C., Park, H.S., Yoon, C.W., Electronically modified Pd catalysts supported on N-doped carbon for the dehydrogenation of formic acid. Int. J. Hydrog. Energy 41 (2016), 15453–15461.
Liu, X., Li, S., Mei, J., Lau, W.-M., Mi, R., Li, Y., Liu, H., Liu, L., From melamine–resorcinol–formaldehyde to nitrogen-doped carbon xerogels with micro- and meso-pores for lithium batteries. J. Mater. Chem. A 2 (2014), 14429–14438.
Jin, H., Zhang, H., Zhong, H., Zhang, J., Nitrogen-doped carbon xerogel: a novel carbon-based electrocatalyst for oxygen reduction reaction in proton exchange membrane (PEM) fuel cells. Energy Environ. Sci. 4 (2011), 3389–3394.
Liu, S., Zhang, H., Xu, Z., Zhong, H., Jin, H., Nitrogen-doped carbon xerogel as high active oxygen reduction catalyst for direct methanol alkaline fuel cell. Int. J. Hydrog. Energy 37 (2012), 19065–19072.
Veselá P., Slovák, V., N-doped carbon xerogels prepared by ammonia assisted pyrolysis: surface characterisation, thermal properties and adsorption ability for heavy metal ions. J. Anal. Appl. Pyrolysis 109 (2014), 266–271.
R. U.S. Department of Energy, Office of Energy Efficiency and Energy, Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles, (n.d.). https://www.energy.gov/eere/fuelcells/downloads/doe-targets-onboard-hydrogen-storage-systems-light-duty-vehicles.
Mori, K., Dojo, M., Yamashita, H., Pd And Pd − Ag nanoparticles within a macroreticular basic resin : an efficient catalyst for hydrogen production from formic acid decomposition. ACS Catal. 3 (2013), 1114–1119.
Mori, K., Masuda, S., Tanaka, H., Yoshizawa, K., Che, M., Yamashita, H., Phenylamine-functionalized mesoporous silica supported PdAg nanoparticles: a dual heterogeneous catalyst for formic acid/CO2 -mediated chemical hydrogen delivery/storage. Chem. Commun. 53 (2017), 4677–4680.
M. Martis, K. Mori, K. Fujiwara, W.S. Ahn, H. Yamashita, Amine-functionalized MIL-125 with imbedded palladium nanoparticles as an efficient catalyst for dehydrogenation of formic acid at ambient temperature, 117 (2013) 22805–22810.
Navlani-García, M., Mori, K., Nozaki, A., Kuwahara, Y., Yamashita, H., Investigation of size sensitivity in the hydrogen production from formic acid over carbon-supported Pd nanoparticles. ChemistrySelect 1 (2016), 1879–1886.
García-Aguilar, J., Navlani-García, M., Berenguer-Murcia, Á., Mori, K., Kuwahara, Y., Yamashita, H., Cazorla-Amorós, D., Evolution of the PVP-Pd surface interaction in nanoparticles through the case study of formic acid decomposition. Langmuir 32 (2016), 12110–12118.
Navlani-García, M., Mori, K., Nozaki, A., Kuwahara, Y., Yamashita, H., Screening of carbon-supported PdAg nanoparticles in the hydrogen production from formic acid. Ind. Eng. Chem. Res. 55 (2016), 7612–7620.
Mori, K., Tanaka, H., Dojo, M., Yoshizawa, K., Yamashita, H., Synergic catalysis of PdCu alloy nanoparticles within a macroreticular basic resin for hydrogen production from formic acid. Chem. - A Eur. J. 21 (2015), 12085–12092.
Wen, M., Mori, K., Kuwahara, Y., Yamashita, H., Plasmonic Au@Pd nanoparticles supported on a basic metal-organic framework: synergic boosting of H2Production from formic acid. ACS Energy Lett. 2 (2017), 1–7.
Navlani-García, M., Martis, M., Lozano-Castelló D., Cazorla-Amorós, D., Mori, K., Yamashita, H., Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation. Catal. Sci. Technol. 5 (2015), 364–371.
Wu, Y., Wen, M., Navlani-García, M., Kuwahara, Y., Mori, K., Yamashita, H., Palladium nanoparticles supported on titanium-doped graphitic carbon nitride for formic acid dehydrogenation. Chem. - An. Asian J. 12 (2017), 860–867.
Bi, Q.Y., Lin, J.D., Liu, Y.M., He, H.Y., Huang, F.Q., Cao, Y., Dehydrogenation of formic acid at room temperature: boosting palladium nanoparticle efficiency by coupling with pyridinic-nitrogen-doped carbon. Angew. Chemie - Int. Ed. 55 (2016), 11849–11853.
Bulushev, D.A., Zacharska, M., Shlyakhova, E.V., Chuvilin, A.L., Guo, Y., Beloshapkin, S., Okotrub, A.V., Bulusheva, L.G., Single isolated Pd 2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal. 6 (2016), 681–691.
Salinas-Torres, D., Léonard, A.F., Stergiopoulos, V., Busby, Y., Pireaux, J.J., Job, N., Effect of nitrogen doping on the pore texture of carbon xerogels based on resorcinol-melamine-formaldehyde precursors. Microporous Mesoporous Mater. 256 (2018), 190–198.
Job, N., Théry, A., Pirard, R., Marien, J., Kocon, L., Rouzaud, J.-N., Béguin, F., Pirard, J.-P., Carbon aerogels, cryogels and xerogels: influence of the drying method on the textural properties of porous carbon materials. Carbon 43 (2005), 2481–2494.
Job, N., Pirard, R., Pirard, J.-P., Alié C., Non intrusive mercury porosimetry: pyrolysis of resorcinol-formaldehyde xerogels. Part. Part. Syst. Charact. 23 (2006), 72–81.
Li, Z., Yang, X., Tsumori, N., Liu, Z., Himeda, Y., Autrey, T., Xu, Q., Tandem nitrogen functionalization of porous carbon: toward immobilizing highly active palladium nanoclusters for dehydrogenation of formic acid. ACS Catal. 7 (2017), 2720–2724.
Masuda, S., Mori, K., Futamura, Y., Yamashita, H., PdAg nanoparticles supported on functionalized mesoporous carbon: promotional effect of surface amine groups in reversible hydrogen Delivery/Storage mediated by formic Acid/CO2. ACS Catal., 2018, 2277–2285.
Arrigo, R., Schuster, M.E., Xie, Z., Yi, Y., Wowsnick, G., Sun, L.L., Hermann, K.E., Friedrich, M., Kast, P., Hävecker, M., Knop-Gericke, A., Schlögl, R., Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal. 5 (2015), 2740–2753.
Raymundo-Piñero, E., Cazorla-Amorós, D., Linares-Solano, A., Find, J., Wild, U., Schlögl, R., Structural characterization of N-containing activated carbon fibers prepared from a low softening point petroleum pitch and a melamine resin. Carbon 40 (2002), 597–608.
Kuroki, S., Hosaka, Y., Yamauchi, C., A solid-state NMR study of the carbonization of polyaniline. Carbon 55 (2013), 160–167.
Pels, J.R., Kapteijn, F., Moulijn, J.A., Zhu, Q., Thomas, K.M., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 33 (1995), 1641–1653.
Inagaki, M., Toyoda, M., Soneda, Y., Morishita, T., Nitrogen-doped carbon materials. Carbon 132 (2018), 104–140.
Koh, M., Nakajima, T., Adsorption of aromatic compounds on CxN-coated activated carbon. Carbon 38 (2000), 1947–1954.
Gheorghiu, C.C., García-Bordejé E., Job, N., Román-Martínez, M.C., Structured carbons as supports for hydrogenation hybrid catalysts prepared by the immobilization of a Rh diamine complex. Chem. Eng. J. 291 (2016), 47–54.
Kim, Y., Kim, J., Kim, D.H., Investigation on the enhanced catalytic activity of a Ni-promoted Pd/C catalyst for formic acid dehydrogenation: effects of preparation methods and Ni/Pd ratios. RSC Adv. 8 (2018), 2441–2448.
Bulushev, D.A., Zacharska, M., Lisitsyn, A.S., Podyacheva, O.Y., Hage, F.S., Ramasse, Q.M., Bangert, U., Bulusheva, L.G., Single atoms of Pt-group metals stabilized by N-doped carbon nanofibers for efficient hydrogen production from formic acid. ACS Catal. 6 (2016), 3442–3451.