Caolo, V.; Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
Roblain, Quentin ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Lecomte, Julie ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Carai, P.; Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
Peters, L.; Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
Cuijpers, I.; Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium, Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
Robinson, E. L.; Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
Derks, K.; Department of Genetics and Cell Biology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
Sergeys, J.; Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
Noël, Agnès ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Jones, E. A. V.; Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
Moons, L.; Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
Heymans, S.; Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium, Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands, The Netherlands Heart Institute, Utrecht, Nl-HI, Netherlands
Federation, I. D. IDF Diabetes Atlas, 7th edn. (Brussels, Belgium, 2015)
Cai, X. & McGinnis, J. F. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives. Journal of Diabetes Research 2016, 3789217 (2016)
Hendrick, A. M., Gibson, M. V. & Kulshreshtha, A. Diabetic Retinopathy. Primary Care: Clinics in Office Practice 42, 451–464 (2015)
Lee, R., Wong, T. Y. & Sabanayagam, C. Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye and Vision 2, 17 (2015)
Zheng, Y., He, M. & Congdon, N. The worldwide epidemic of diabetic retinopathy. Indian Journal of Ophthalmology 60, 428–431 (2012)
Jiang, X., Yang, L. & Luo, Y. Animal Models of Diabetic Retinopathy. Current Eye Research 40, 761–771 (2015)
Rakoczy, E. P. et al. Characterization of a mouse model of hyperglycemia and retinal neovascularization. The American journal of pathology 177, 2659–2670 (2010)
Behl, Y. et al. Diabetes-Enhanced Tumor Necrosis Factor-α Production Promotes Apoptosis and the Loss of Retinal Microvascular Cells in Type 1 and Type 2 Models of Diabetic Retinopathy. The American Journal of Pathology 172, 1411–1418 (2008)
Griffin, K. A. et al. Dynamic blood pressure load and nephropathy in the ZSF1 (fa/fa cp) model of type 2 diabetes. American Journal of Physiology - Renal Physiology 293, F1605 (2007)
Dominguez, J. H. et al. Renal injury: Similarities and differences in male and female rats with the metabolic syndrome. Kidney Int 69, 1969–1976 (2006)
Sasongko, M. B. et al. Retinal Vessel Tortuosity and Its Relation to Traditional and Novel Vascular Risk Markers in Persons with Diabetes. Current eye research 41, 551–557 (2016)
Arboleda-Velasquez, J. F., Valdez, C. N., Marko, C. K. & D’Amore, P. A. From pathobiology to the targeting of pericytes for the treatment of diabetic retinopathy. Current diabetes reports 15, 573 (2015)
Hammes, H. P. et al. Pericytes and the pathogenesis of diabetic retinopathy. Diabetes 51, 3107–3112 (2002)
Korn, C. & Augustin Hellmut G. Mechanisms of Vessel Pruning and Regression. Developmental cell 34, 5–17 (2015)
Ciulla, T. A., Amador, A. G. & Zinman, B. Diabetic Retinopathy and Diabetic Macular Edema. Diabetes Care 26, 2653 (2003)
Semenza, G. L. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3, 721–732 (2003)
Grigsby, J. G. et al. The Role of Microglia in Diabetic Retinopathy. Journal of Ophthalmology 2014, 15 (2014)
Madeira, M. H. et al. Contribution of Microglia-Mediated Neuroinflammation to Retinal Degenerative Diseases. Mediators of Inflammation 2015, 15 (2015)
Omri, S. et al. Microglia/Macrophages Migrate through Retinal Epithelium Barrier by a Transcellular Route in Diabetic Retinopathy: Role of PKCζ in the Goto Kakizaki Rat Model. The American Journal of Pathology 179, 942–953 (2011)
Damani, M. R. et al. Age-related Alterations in the Dynamic Behavior of Microglia. Aging cell 10, 263–276 (2011)
Nowroozpoor-Dailami, K., Mirabi, A. M., Tehrani, M. & Ajami, A. Aqueous humor and serum concentrations of soluble MICA and MICB in glaucoma patients. Iranian journal of immunology: IJI 11, 275–281 (2014)
Baker, R. G., Hayden, M. S. & Ghosh, S. NF-kappaB, inflammation, and metabolic disease. Cell Metab 13, 11–22 (2011)
Miyamoto, K. et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proceedings of the National Academy of Sciences of the United States of America 96, 10836–10841 (1999)
Tatemoto, K., Carlquist, M. & Mutt, V. Neuropeptide Y–a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296, 659–660 (1982)
Santos-Carvalho, A., Ambrosio, A. F. & Cavadas, C. Neuropeptide Y system in the retina: From localization to function. Progress in retinal and eye research 47, 19–37 (2015)
Alvaro, A. R. et al. Neuropeptide Y protects retinal neural cells against cell death induced by ecstasy. Neuroscience 152, 97–105 (2008)
Santos-Carvalho, A., Elvas, F., Alvaro, A. R., Ambrosio, A. F. & Cavadas, C. Neuropeptide Y receptors activation protects rat retinal neural cells against necrotic and apoptotic cell death induced by glutamate. Cell death & disease 4, e636 (2013)
Silva, A. P. et al. Activation of neuropeptide Y receptors is neuroprotective against excitotoxicity in organotypic hippocampal slice cultures. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 17, 1118–1120 (2003)
Alvaro, A. R. et al. NPY in rat retina is present in neurons, in endothelial cells and also in microglial and Muller cells. Neurochemistry international 50, 757–763 (2007)
Santos-Carvalho, A., Aveleira, C. A., Elvas, F., Ambrosio, A. F. & Cavadas, C. Neuropeptide Y receptors Y1 and Y2 are present in neurons and glial cells in rat retinal cells in culture. Investigative ophthalmology & visual science 54, 429–443 (2013)
Jaakkola, U. et al. The Leu7Pro polymorphism of neuropeptide Y is associated with younger age of onset of type 2 diabetes mellitus and increased risk for nephropathy in subjects with diabetic retinopathy. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association 114, 147–152 (2006)
Koulu, M. et al. Neuropeptide Y and Y2-receptor are involved in development of diabetic retinopathy and retinal neovascularization. Annals of medicine 36, 232–240 (2004)
Niskanen, L. et al. Leucine 7 to proline 7 polymorphism in the neuropeptide y gene is associated with retinopathy in type 2 diabetes. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association 108, 235–236 (2000)
Yoon, H. Z., Yan, Y., Geng, Y. & Higgins, R. D. Neuropeptide Y expression in a mouse model of oxygen-induced retinopathy. Clinical & experimental ophthalmology 30, 424–429 (2002)
Schmid, E. et al. Secretoneurin, substance P and neuropeptide Y in the oxygen-induced retinopathy in C57Bl/6N mice. Peptides 37, 252–257 (2012)
Wang, X., Garcia, C. M., Shui, Y. B. & Beebe, D. C. Expression and regulation of alpha-, beta-, and gamma-crystallins in mammalian lens epithelial cells. Investigative ophthalmology & visual science 45, 3608–3619 (2004)
Fort, P. E., Freeman, W. M., Losiewicz, M. K., Singh, R. S. & Gardner, T. W. The retinal proteome in experimental diabetic retinopathy: up-regulation of crystallins and reversal by systemic and periocular insulin. Molecular & cellular proteomics: MCP 8, 767–779 (2009)
Reddy, V. S., Kumar, C. U. & Reddy, G. B. Effect of chronic hyperglycemia on crystallin levels in rat lens. Biochemical and biophysical research communications 446, 602–607 (2014)
Reddy, V. S., Jakhotia, S., Reddy, P. Y. & Reddy, G. B. Hyperglycemia induced expression, phosphorylation, and translocation of alphaB-crystallin in rat skeletal muscle. IUBMB life 67, 291–299 (2015)
Horwitz, J. Alpha-crystallin can function as a molecular chaperone. Proceedings of the National Academy of Sciences of the United States of America 89, 10449–10453 (1992)
Liedtke, T., Schwamborn, J. C., Schroer, U. & Thanos, S. Elongation of axons during regeneration involves retinal crystallin betab2 (crybb2). Molecular & cellular proteomics: MCP 6, 895–907 (2007)
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome biology 14, R36 (2013)
Chen, W., Lu, Q., Lu, L. & Guan, H. Increased levels of alphaB-crystallin in vitreous fluid of patients with proliferative diabetic retinopathy and correlation with vascular endothelial growth factor. Clinical & experimental ophthalmology 45, 379–384 (2017)
Kim, Y. H. et al. Reduction of experimental diabetic vascular leakage and pericyte apoptosis in mice by delivery of alphaA-crystallin with a recombinant adenovirus. Diabetologia 55, 2835–2844 (2012)
Kase, S. et al. alphaB-crystallin regulation of angiogenesis by modulation of VEGF. Blood 115, 3398–3406 (2010)
Zhang, C. et al. A potential role for beta- and gamma-crystallins in the vascular remodeling of the eye. Developmental dynamics: an official publication of the American Association of Anatomists 234, 36–47 (2005)
Sinha, D. et al. A spontaneous mutation affects programmed cell death during development of the rat eye. Experimental eye research 80, 323–335 (2005)
Fischer, D., Hauk, T. G., Muller, A. & Thanos, S. Crystallins of the beta/gamma-superfamily mimic the effects of lens injury and promote axon regeneration. Molecular and cellular neurosciences 37, 471–479 (2008)
Barouch, F. C. et al. Integrin-mediated neutrophil adhesion and retinal leukostasis in diabetes. Investigative ophthalmology & visual science 41, 1153–1158 (2000)
Penfold, P. L., Wen, L., Madigan, M. C., King, N. J. & Provis, J. M. Modulation of permeability and adhesion molecule expression by human choroidal endothelial cells. Investigative ophthalmology & visual science 43, 3125–3130 (2002)
Scott, A., Powner, M. B. & Fruttiger, M. Quantification of vascular tortuosity as an early outcome measure in oxygen induced retinopathy (OIR). Experimental eye research 120, 55–60 (2014)
Sawamiphak, S., Ritter, M. & Acker-Palmer, A. Preparation of retinal explant cultures to study ex vivo tip endothelial cell responses. Nature protocols 5, 1659–1665 (2010)
Carpentier, G. Contribution: Angiogenesis Analyzer. Vol. 2012 (ImageJ News, 2012)
Van Hove, I. et al. MMP-3 Deficiency Alleviates Endotoxin-Induced Acute Inflammation in the Posterior Eye Segment. Int J Mol Sci 17(2016)
Derks, K. W. et al. Deciphering the RNA landscape by RNAome sequencing. RNA biology 12, 30–42 (2015)