Abstract :
[en] Classic estimates of groundwater fluxes are usually based on the application of Darcy's law, which can lead to large imprecisions in transient groundwater flow cases. There is a need for direct, in situ measurement techniques able to monitor time-variable groundwater fluxes. The investigation presented here demonstrates that the Finite Volume Point Dilution Method (FVPDM) is a promising technique for the continuous monitoring of groundwater fluxes. The experimental configuration consisted of monitoring transient groundwater fluxes generated by a multiple step pumping test, which was undertaken in the alluvial aquifer of the River Meuse, Liège (Belgium). Additionally, two FVPDM tests were simultaneously performed in two piezometers screened at two different depths in the alluvial aquifer. Tracer concentration changes during the FVPDM tests were interpreted as the consequences of Darcy flux changes in the alluvial aquifer, which was related to changes in the applied pumping rate. Piezometric levels were also monitored in piezometers located around the pumping well. The pumping test was interpreted using classical analytical solutions, and the FVPDM tests were interpreted using a new mathematical solution, which allows for calculating changes in Darcy fluxes based on the FVPDM tracer concentration evolution during transient groundwater flow conditions. The experiment demonstrated the FVPDM's ability to monitor, as well as be sensitive to changes in transient groundwater fluxes. The FVPDM interpretation also showed contrasting results between the upper part of the aquifer, which is made of loam and sand and slow groundwater flows prevail, and the lower part of the aquifer, which is made of gravels and pebbles and intense groundwater flows prevail.
Scopus citations®
without self-citations
9