This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
All documents in ORBi are protected by a user license.
[en] A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities among dipolarization, FAC generation, particle acceleration, and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 min later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe that this dipolarization led to an efficient Fermi acceleration to electrons and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs
Research Center/Unit :
STAR - Space sciences, Technologies and Astrophysics Research - ULiège
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Yao, Zhonghua ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Rae, I. J.
Lui, A. T. Y.
Murphy, K. R.
Owen, C. J.
Pu, Z. Y.
Forsyth, C.
Grodent, Denis ; Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Zong, Q. G.
Du, A. M.
Language :
English
Title :
An explanation of auroral intensification during the substorm expansion phase
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Akasofu, S.-I. (1964), The development of the auroral substorm, Planet. Space Sci., 12(4), 273–282.
Akasofu, S.-I. (1972), Magnetospheric substorms: A model, in Solar-Terrestrial Physics, edited by E. R. Dyer and J. G. Roederer, pp. 531–551, Springer, Netherlands.
Albert, R. D. (1967), Nearly monoenergetic electron fluxes detected during a visible aurora, Phys. Rev. Lett., 18(10), 369–372.
Alexeev, I., V. Sergeev, C. Owen, A. Fazakerley, E. Lucek, and H. Reme (2006), Remote sensing of a magnetotail reconnection X-line using polar rain electrons, Geophys. Res. Lett., 33, L19105, doi:10.1029/2006GL027243.
Anderson, B. J., K. Takahashi, and B. A. Toth (2000), Sensing global Birkeland currents with Iridium ® engineering magnetometer data, Geophys. Res. Lett., 27(24), 4045–4048.
Angelopoulos, V. (2009), The THEMIS Mission, Springer, New York.
Angelopoulos, V., et al. (2009), First results from the THEMIS mission, in The THEMIS Mission, pp. 453–476, Springer, New York.
Auster, H., et al. (2009), The THEMIS fluxgate magnetometer, in The THEMIS Mission, pp. 235–264, Springer, New York.
Baker, D., T. Fritz, R. McPherron, D. Fairfield, Y. Kamide, and W. Baumjohann (1985), Magnetotail energy storage and release during the CDAW 6 substorm analysis intervals, J. Geophys. Res., 90, 1205–1216.
Baker, D. N., T. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. McPherron (1996), Neutral line model of substorms: Past results and present view, J Geophys. Res., 101, 12–975.
Baumjohann, W., G. Paschmann, and C. Cattell (1989), Average plasma properties in the central plasma sheet, J. Geophys. Res., 94(A6), 6597–6606.
Birn, J., and M. Hesse (2013), The substorm current wedge in MHD simulations, J. Geophys. Res. Space Physics, 118, 3364–3376, doi:10.1002/jgra.50187.
Birn, J., M. Hesse, G. Haerendel, W. Baumjohann, and K. Shiokawa (1999), Flow braking and the substorm current wedge, J. Geophys. Res., 104(A9), 19,895–19,903.
Birn, J., A. Artemyev, D. Baker, M. Echim, M. Hoshino, and L. Zelenyi (2012), Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 173(1–4), 49–102.
Birn, J., M. Hesse, R. Nakamura, and S. Zaharia (2013), Particle acceleration in dipolarization events, J. Geophys. Res. Space Physics, 118, 1960–1971, doi:10.1002/jgra.50132.
Boström, R. (1964), A model of the auroral electrojets, J. Geophys. Res., 69(23), 4983–4999.
Cao, J.-B., et al. (2010), Geomagnetic signatures of current wedge produced by fast flows in a plasma sheet, J. Geophys. Res., 115, A08205, doi:10.1029/2009JA014891.
Chaston, C., et al. (2010), Motion of aurorae, Geophys. Res. Lett., 37, L08104, doi:10.1029/2009GL042117.
Craven, J. D., and L. A. Frank (1987), Latitudinal motions of the aurora during substorms, J. Geophys. Res., 92(A5), 4565–4573.
Du, J., T. Zhang, R. Nakamura, C. Wang, W. Baumjohann, A. Du, M. Volwerk, K.-H. Glassmeier, and J. McFadden (2011), Mode conversion between Alfvén and slow waves observed in the magnetotail by THEMIS, Geophys. Res. Lett., 38, L07101, doi:10.1029/2011GL046989.
Duan, S., et al. (2011), Multiple magnetic dipolarizations observed by THEMIS during a substorm, Ann. Geophys., 29, 331–339.
Dungey, J. W. (1961), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6(2), 47–48.
Elphinstone, R., et al. (1995), The double oval UV auroral distribution: 1. Implications for the mapping of auroral arcs, J. Geophys. Res., 100(A7), 12,075–12,092.
Forsyth, C., M. Lester, R. Fear, E. Lucek, I. Dandouras, A. Fazakerley, H. Singer, and T. K. Yeoman (2009), Solar wind and substorm excitation of the wavy current sheet, Ann. Geophys., 27, 2457–2474.
Fu, H. S., Y. V. Khotyaintsev, M. André, and A. Vaivads (2011), Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 38, L16104, doi:10.1029/2011GL048528.
Hasegawa, A. (1976), Particle acceleration by MHD surface wave and formation of aurora, J. Geophys. Res., 81(28), 5083–5090.
Henderson, M. G. (2009), Observational evidence for an inside-out substorm onset scenario, Ann. Geophys., 27, 2129–2140.
Hones, E. (1977), Substorm processes in the magnetotail: Comments on “On hot tenuous plasmas, fireballs, and boundary layers in the Earth's magnetotail” by La Frank, KL ackerson, and RP lepping, J. Geophys. Res., 82(35), 5633–5640.
Hsu, T.-S., and R. L. McPherron (2003), Occurrence frequencies of IMF triggered and nontriggered substorms, J. Geophys. Res., 108(A7), 1307, doi:10.1029/2002JA009442.
Jacquey, C., J. Sauvaud, J. Dandouras, and A. Korth (1993), Tailward propagating cross-tail current disruption and dynamics of near-Earth tail: A multi-point measurement analysis, Geophys. Res. Lett., 20(10), 983–986.
Kalmoni, N. M., I. J. Rae, C. E. Watt, K. R. Murphy, C. Forsyth, and C. J. Owen (2015), Statistical characterization of the growth and spatial scales of the substorm onset arc, J. Geophys. Res. Space Physics, 120, 8503–8516, doi:10.1002/2015JA021470.
Keiling, A., et al. (2008), Multiple intensifications inside the auroral bulge and their association with plasma sheet activities, J. Geophys. Res., 113, 8503–8516, doi:10.1002/2015JA021470.
Keiling, A., et al. (2009), Substorm current wedge driven by plasma flow vortices: THEMIS observations, J. Geophys. Res., 114, A00C22, doi:10.1029/2009JA014114.
Kepko, L., M. Kivelson, and K. Yumoto (2001), Flow bursts, braking, and Pi2 pulsations, J. Geophys. Res., 106(A2), 1903–1915.
Liang, J., E. Donovan, W. Liu, B. Jackel, M. Syrjäsuo, S. Mende, H. Frey, V. Angelopoulos, and M. Connors (2008), Intensification of preexisting auroral arc at substorm expansion phase onset: Wave-like disruption during the first tens of seconds, Geophys. Res. Lett., 35, L17S19, doi:10.1029/2008GL033666.
Liou, K., C.-I. Meng, P. Newell, A. Lui, G. Reeves, and R. Belian (2001), Particle injections with auroral expansions, J. Geophys. Res., 106(A4), 5873–5881.
Lui, A. (1991), A synthesis of magnetospheric substorm models, J. Geophys. Res., 96(A2), 1849–1856.
Lui, A. (1996), Current disruption in the Earth's magnetosphere: Observations and models, J. Geophys. Res., 101(A6), 13,067–13,088.
Lui, A. (2004), Potential plasma instabilities for substorm expansion onsets, Space Sci. Rev., 113(1–2), 127–206.
Lui, A. (2009), Comment on tail reconnection triggering substorm onset, Science, 324(5933), 1391–1391.
Lui, A. (2011), Reduction of the cross-tail current during near-Earth dipolarization with multisatellite observations, J. Geophys. Res., 116, A12239, doi:10.1029/2011JA017107.
Lui, A. (2013), Cross-tail current evolution during substorm dipolarization, Ann. Geophys., 31, 1131–1142.
Lui, A. (2015), Dipolarization fronts and magnetic flux transport, Geosci. Lett., 2(1), 1–8.
Lui, A., et al. (2008), Determination of the substorm initiation region from a major conjunction interval of THEMIS satellites, J. Geophys. Res., 113, A00C04, doi:10.1029/2008JA013424.
Lui, A., E. Spanswick, E. Donovan, J. Liang, W. Liu, O. LeContel, and Q.-G. Zong (2010), A transient narrow poleward extrusion from the diffuse aurora and the concurrent magnetotail activity, J. Geophys. Res., 115, A10210, doi:10.1029/2010JA015449.
Marklund, G. T., S. Sadeghi, T. Karlsson, P.-A. Lindqvist, H. Nilsson, C. Forsyth, A. Fazakerley, E. A. Lucek, and J. Pickett (2011), Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights, Phys. Rev. Lett., 106(5), 055002.
McFadden, J., C. Carlson, D. Larson, M. Ludlam, R. Abiad, B. Elliott, P. Turin, M. Marckwordt, and V. Angelopoulos (2008), The THEMIS ESA plasma instrument and in-flight calibration, Space Sci. Rev., 141(1–4), 277–302.
McPherron, R., C. Russell, M. Kivelson, and P. Coleman (1973), Substorms in space: The correlation between ground and satellite observations of the magnetic field, Radio Sci., 8(11), 1059–1076.
Mende, S., S. Harris, H. Frey, V. Angelopoulos, C. Russell, E. Donovan, B. Jackel, M. Greffen, and L. Peticolas (2009), The THEMIS array of ground-based observatories for the study of auroral substorms, in The THEMIS Mission, pp. 357–387, Springer, New York.
Mende, S. B., H. U. Frey, C. W. Carlson, J. McFadden, J.-C. Gérard, B. Hubert, S. A. Fuselier, G. Gladstone, and J. L. Burch (2002), IMAGE and FAST observations of substorm recovery phase aurora, Geophys. Res. Lett., 29(12), 43–1 – 43-4, doi:10.1029/2001GL013027.
Murphy, K. R., I. R. Mann, I. J. Rae, C. L. Waters, B. J. Anderson, D. K. Milling, H. J. Singer, and H. Korth (2012), Reduction in field-aligned currents preceding and local to auroral substorm onset, Geophys. Res. Lett., 39, L15106, doi:10.1029/2012GL052798.
Murphy, K. R., I. R. Mann, I. J. Rae, A. P. Walsh, and H. U. Frey (2014), Inner magnetospheric onset preceding reconnection and tail dynamics during substorms: Can substorms initiate in two different regions?, J. Geophys. Res. Space Physics, 119, 9684–9701, doi:10.1002/2014JA019795.
Nagai, T., D. Baker, and P. Higbie (1983), Development of substorm activity in multiple-onset substorms at synchronous orbit, J. Geophys. Res., 88(A9), 6994–7004.
Nakamizo, A., and T. Iijima (2003), A new perspective on magnetotail disturbances in terms of inherent diamagnetic processes, J. Geophys. Res., 108, 1286, doi:10.1029/2002JA009400.
Nakamura, R., W. Baumjohann, R. Schödel, M. Brittnacher, V. Sergeev, M. Kubyshkina, T. Mukai, and K. Liou (2001), Earthward flow bursts, auroral streamers, and small expansions, J. Geophys. Res., 106(A6), 10,791–10,802.
Nakamura, R., et al. (2006), Dynamics of thin current sheets associated with magnetotail reconnection, J. Geophys. Res., 111, A11206, doi:10.1029/2006JA011706.
Nishimura, Y., L. Lyons, T. Kikuchi, V. Angelopoulos, E. Donovan, S. Mende, P. Chi, and T. Nagatsuma (2012), Formation of substorm Pi2: A coherent response to auroral streamers and currents, J. Geophys. Res., 117, A09218, doi:10.1029/2012JA017889.
Ohtani, S., R. Yamaguchi, H. Kawano, F. Creutzberg, J. Sigwarth, L. Frank, and T. Mukai (2002), Does the braking of the fast plasma flow trigger a substorm?: A study of the August 14, 1996, event, Geophys. Res. Lett., 29(15), 1721, doi:10.1029/2001GL013785.
Ohtani, S.-I (2004), Flow bursts in the plasma sheet and auroral substorm onset: Observational constraints on connection between midtail and near-Earth substorm processes, Space Sci. Rev., 113(1–2), 77–96.
Palin, L., et al. (2015), Three-dimensional current systems and ionospheric effects associated with small dipolarization fronts, J. Geophys. Res. Space Physics, 120, 3739–3757, doi:10.1002/2015JA021040.
Parks, G. K. (1991), Physics of Space Plasmas: An Introduction, Addison-Wesley Publ. Co., Redwood City, Calif.
Partamies, N., O. Amm, K. Kauristie, T. Pulkkinen, and E. Tanskanen (2003), A pseudo-breakup observation: Localized current wedge across the postmidnight auroral oval, J. Geophys. Res., 108(A1), 1020, doi:10.1029/2002JA009276.
Pu, Z., et al. (1997), MHD drift ballooning instability near the inner edge of the near-Earth plasma sheet and its application to substorm onset, J. Geophys. Res., 102(A7), 14,397–14,406.
Pu, Z., et al. (2010), THEMIS observations of substorms on 26 February 2008 initiated by magnetotail reconnection, J. Geophys. Res., 115, A02212, doi:10.1029/2009JA014217.
Pulkkinen, T., D. Baker, M. Wiltberger, C. Goodrich, R. Lopez, and J. Lyon (1998), Pseudobreakup and substorm onset: Observations and MHD simulations compared, J. Geophys. Res., 103(A7), 14,847–14,854.
Pytte, T., R. McPherron, and S. Kokubun (1976), The ground signatures of the expansion phase during multiple onset substorms, Planet. Space Sci., 24(12), 1115–1132.
Rae, I. J., et al. (2009), Near-Earth initiation of a terrestrial substorm, J. Geophys. Res., 114, A07220, doi:10.1029/2008JA013771.
Rostoker, G. (1998), On the place of the pseudo-breakup in a magnetospheric substorm, Geophys. Res. Lett., 25(2), 217–220.
Rostoker, G., S. Akasofu, J. Foster, R. Greenwald, A. Lui, Y. Kamide, K. Kawasaki, R. McPherron, and C. Russell (1980), Magnetospheric substorms—Definition and signatures, J. Geophys. Res., 85, 1663–1668.
Runov, A., et al. (2005), Electric current and magnetic field geometry in flapping magnetotail current sheets, Ann. Geophys., 23, 1391–1403.
Saito, M., Y. Miyashita, M. Fujimoto, K. Liou, Y. Saito, and J. Sigwarth (2010), Stepwise feature of aurora during substorm expansion compared with the near-Earth tail dipolarization: Possible types of substorm dynamics, J. Geophys. Res., 115, A02207, doi:10.1029/2009JA014572.
Sergeev, V., et al. (2003), Current sheet flapping motion and structure observed by Cluster, Geophys. Res. Lett., 30(6), 1327, doi:10.1029/2002GL016500.
Sergeev, V., V. Angelopoulos, M. Kubyshkina, E. Donovan, X.-Z. Zhou, A. Runov, H. Singer, J. McFadden, and R. Nakamura (2011), Substorm growth and expansion onset as observed with ideal ground-spacecraft THEMIS coverage, J. Geophys. Res., 116, A00I26, doi:10.1029/2010JA015689.
Sharber, J., and W. Heikkila (1972), Fermi acceleration of auroral particles, J. Geophys. Res., 77(19), 3397–3410.
Shiokawa, K., W. Baumjohann, and G. Haerendel (1997), Braking of high-speed flows in the near-Earth tail, Geophys. Res. Lett., 24(10), 1179–1182.
Southwood, D., and M. Saunders (1985), Curvature coupling of slow and Alfvén MHD waves in a magnetotail field configuration, Planet. Space Sci., 33(1), 127–134.
Tang, C., L. Lu, M. Zhou, and Z. Yao (2013), THEMIS observations of electron acceleration associated with the evolution of substorm dipolarization in the near-Earth tail, J. Geophys. Res. Space Physics, 118, 4237–4247, doi:10.1002/jgra.50418.
Tsyganenko, N., and M. Sitnov (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi:10.1029/2004JA010798.
Volwerk, M., et al. (2003), A statistical study of compressional waves in the tail current sheet, J. Geophys. Res., 108(A12), 1429, doi:10.1029/2003JA010155.
Walsh, A., C. Owen, A. Fazakerley, C. Forsyth, and I. Dandouras (2011), Average magnetotail electron and proton pitch angle distributions from Cluster PEACE and CIS observations, Geophys. Res. Lett., 38, L06103, doi:10.1029/2011GL046770.
Waters, C., B. Anderson, and K. Liou (2001), Estimation of global field aligned currents using the Iridium system magnetometer data, Geophys. Res. Lett, 28(11), 2165–2168.
Wu, P., T. Fritz, B. Larvaud, and E. Lucek (2006), Substorm associated magnetotail energetic electrons pitch angle evolutions and flow reversals: Cluster observation, Geophys. Res. Lett., 33, L17101, doi:10.1029/2006GL026595.
Xing, X., C.-P. Wang, J. Liang, and L. R. Lyons (2015), Plasma sheet Pi2 pulsations associated with bursty bulk flows, J. Geophys. Res. Space Physics, 120, 8692–8706, doi:10.1002/2015JA021668.
Yao, Z., et al. (2012), Mechanism of substorm current wedge formation: THEMIS observations, Geophys. Res. Lett., 39, L13102, doi:10.1029/2012GL052055.
Yao, Z., et al. (2013), Conjugate observations of flow diversion in the magnetotail and auroral arc extension in the ionosphere, J. Geophys. Res. Space Physics, 118, 4811–4816, doi:10.1002/jgra.50419.
Yao, Z., et al. (2014), Current reduction in a pseudo-breakup event: THEMIS observations, J. Geophys. Res. Space Physics, 119(10), 8178–8187, doi:10.1002/2014JA020186.
Yao, Z., et al. (2015), A physical explanation for the magnetic decrease ahead of dipolarization fronts, Ann. Geophys., 33, 1301–1309.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.