scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
E. Ghafar-Zadeh and M. Sawan, "A hybrid microfluidic/CMOS capacitive sensor dedicated to lab-on-chip applications," IEEE Trans. Biomed. Circuits Syst., vol. 1, no. 4, pp. 270-277, Dec. 2007.
E. Y. Chow, A. L. Chlebowski, and P. P. Irazoqui, "A miniatureimplantable RF-wireless active glaucoma intraocular pressure monitor," IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 340-349, Dec. 2010.
A. Arshak et al., "Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract," Med. Eng. Phys., vol. 27, no. 5, pp. 347-358, Jun. 2005.
Y. Kim, G. Lee, S. Park, B. Kim, J.-O. Park, and J.-H. Cho, "Pressure monitoring system in gastro-intestinal tract," in Proc. IEEE Int. Conf. Robot. Autom., Apr. 2005, pp. 1321-1326.
C. Pang et al., "A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres," Nature Mater., vol. 11, no. 9, pp. 795-801, Sep. 2012.
D. Brox, A. R. Mohammadi, and K. Takahata, "Non-lithographically microfabricated capacitive pressure sensor for biomedical applications," Electron. Lett., vol. 47, no. 18, pp. 1015-1017, Sep. 2011.
P.-J. Chen, S. Saati, R. Varma, M. S. Humayun, and Y.-C. Tai, "Wireless intraocular pressure sensing using microfabricated minimally invasive flexible-coiled LC sensor implant," J. Microelectromech. Syst., vol. 19, no. 4, pp. 721-734, Aug. 2010.
E. G. Bakhoum and M. H. M. Cheng, "High-sensitivity inductive pressure sensor," IEEE Trans. Instrum. Meas., vol. 60, no. 8, pp. 2960-2966, Aug. 2011.
J. Zhou et al., "Flexible piezotronic strain sensor," Nano Lett., vol. 8, no. 9, pp. 3035-3040, Aug. 2008.
X. Zhao et al., "A nano-opto-mechanical pressure sensor via ring resonator," Opt. Exp., vol. 20, no. 8, pp. 8535-8542, Apr. 2012.
N. Yazdi, A. Mason, K. Najafi, and K. D. Wise, "A generic interface chip for capacitive sensors in low-power multi-parameter microsystems," Sens. Actuators A, Phys., vol. 84, no. 3, pp. 351-361, Sep. 2000.
N. Yazdi, H. Kulah, and K. Najafi, "Precision readout circuits for capacitive microaccelerometers," in Proc. IEEE Sensors, Vienna, Austria, Oct. 2004, pp. 28-31.
S. Xia, K. Makinwa, and S. Nihtianov, "A capacitance-to-digital converter for displacement sensing with 17b resolution and 20 μs conversion time," in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 198-200.
D.-Y. Shin, H. Lee, and S. Kim, "A delta-sigma interface circuit for capacitive sensors with an automatically calibrated zero point," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 2, pp. 90-94, Feb. 2011.
M. Yip and A. P. Chandrakasan, "A resolution-reconfigurable 5-to-10-bit 0.4-to-1 V power scalable SAR ADC for sensor applications," IEEE J. Solid-State Circuits, vol. 48, no. 6, pp. 1453-1464, Jun. 2013.
H. Omran, M. Arsalan, and K. N. Salama, "An integrated energyefficient capacitive sensor digital interface circuit," Sens. Actuators A, Phys., vol. 216, pp. 43-51, Sep. 2014.
P. K. Chan and J. Cui, "Design of chopper-stabilized amplifiers with reduced offset for sensor applications," IEEE Sensors J., vol. 8, no. 12, pp. 1968-1980, Dec. 2008.
M. S. Arefin, J. M. Y. Redouté, and M. R. Yuce, "A MEMS interface IC with low-power and wide-range frequency-to-voltage converter for biomedical applications," IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 2, pp. 455-466, Apr. 2016.
H. Wang, C.-C. Weng, and A. Hajimiri, "Phase noise and fundamental sensitivity of oscillator-based reactance sensors," IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2215-2229, May 2013.
H. Wang, Y. Chen, A. Hassibi, A. Scherer, and A. Hajimiri, "A frequency-shift CMOS magnetic biosensor array with single-bead sensitivity and no external magnet," in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 438-439.
M. S. Arefin, M. B. Coskun, T. Alan, J.-M. Redouté, A. Neild, and M. R. Yuce, "A microfabricated fringing field capacitive pH sensor with an integrated readout circuit," Appl. Phys. Lett., vol. 104, no. 22, p. 223503, Jun. 2014.
M. S. Arefin, M. B. Coskun, T. Alan, J.-M. Redouté, A. Neild, and M. R. Yuce, "A MEMS capacitive pH sensor for high acidic and basic solutions," in Proc. IEEE Sensors, Nov. 2014, pp. 1792-1794.
A. Mohammadi, M. R. Yuce, and S. O. R. Moheimani, "Frequency modulation technique for MEMS resistive sensing," IEEE Sensors J., vol. 12, no. 8, pp. 2690-2698, Aug. 2012.
M. B. Coskun, K. Thotahewa, Y.-S. Ying, M. Yuce, A. Neild, and T. Alan, "Nanoscale displacement sensing using microfabricated variable-inductance planar coils," Appl. Phys. Lett., vol. 103, p. 143501, Oct. 2013.
N. Nizza, M. Dei, F. Butti, and P. Bruschi, "A low-power interface for capacitive sensors with PWM output and intrinsic low pass characteristic," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 6, pp. 1419-1431, Jun. 2013.
H. Omran, M. Arsalan, and K. N. Salama, "7.9 pJ/step energy-efficient multi-slope 13-bit capacitance-to-digital converter," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 61, no. 8, pp. 589-593, Aug. 2014.
Capacitance to Digital Converters, accessed on Jun. 22, 2016. [Online]. Available: http://www.analog.com/en/products/analog-todigital- converters/integrated-special-purpose-converters/capacitive-todigital- and-touch-screen-controllers.html#capacitive-to-digital-andtouch- screen-controllers
W. Bracke, R. Puers, and C. Van Hoof, Ultra Low Power Capacitive Sensor Interfaces. Dordrecht, The Netherlands: Springer, 2007.
N. Couniot, D. Bol, O. Poncelet, L. A. Francis, and D. Flandre, "A capacitance-to-frequency converter with on-chip passivated microelectrodes for bacteria detection in saline buffers up to 575 MHz," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 62, no. 2, pp. 159-163, Feb. 2015.
E. D. Kyriakis-Bitzaros, N. A. Stathopoulos, S. Pavlos, D. Goustouridis, and S. Chatzandroulis, "A reconfigurable multichannel capacitive sensor array interface," IEEE Trans. Instrum. Meas., vol. 60, no. 9, pp. 3214-3221, Sep. 2011.
A. S. Hou, "Design of fast frequency-to-voltage converter using successive-approximation technique," J. Circuits, Syst. Signal Process., vol. 23, no. 6, pp. 537-550, Dec. 2004.
H. T. Bui and Y. Savaria, "Design of a high-speed differential frequencyto- voltage converter and its application in a 5-GHz frequency-locked loop," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 3, pp. 766-774, Apr. 2008.
A. Djemouai, M. A. Sawan, and M. Slamani, "New frequency-locked loop based on CMOS frequency-to-voltage converter: Design and implementation," IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 48, no. 5, pp. 441-449, May 2001.
F. Deng, Y. He, C. Zhang, and W. Feng, "A CMOS humidity sensor for passive RFID sensing applications," Sensors, vol. 14, no. 5, pp. 8728-8739, May 2014.
F. Deng, Y. He, X. Wu, and Z. Fu, "A CMOS pressure sensor with integrated interface for passive RFID applications," Meas. Sci. Technol., vol. 25, no. 12, p. 125104, Oct. 2014.
Z. Tan, S. H. Shalmany, G. C. M. Meijer, and M. A. P. Pertijs, "An energy-efficient 15-bit capacitive-sensor interface based on period modulation," IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1703-1711, Jul. 2012.
M.-L. Sheu, W.-H. Hsu, and L.-J. Tsao, "A capacitance-ratio-modulated current front-end circuit with pulsewidth modulation output for a capacitive sensor interface," IEEE Trans. Instrum. Meas., vol. 61, no. 2, pp. 447-455, Feb. 2012.
J. H. L. Lu, M. Inerowicz, S. Joo, J.-K. Kwon, and B. Jung, "A lowpower, wide-dynamic-range semi-digital universal sensor readout circuit using pulsewidth modulation," IEEE Sensors J., vol. 11, no. 5, pp. 1134-1144, May 2011.
Z. Kokolanski, C. Gavrovski, V. Dimcev, and M. Makraduli, "Simple interface for resistive sensors based on pulse width modulation," IEEE Trans. Instrum. Meas., vol. 62, no. 11, pp. 2983-2992, Nov. 2013.
C.-H. Lee, W.-Y. Chuang, M. A. Cowan, W.-J. Wu, and C.-T. Lin, "A low-power integrated humidity CMOS sensor by printing-on-chip technology," Sensors, vol. 14, no. 5, pp. 9247-9255, May 2014.
J. Zhang, J. Zhou, and A. Mason, "Highly adaptive transducer interface circuit for multiparameter microsystems," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 1, pp. 167-178, Jan. 2007.
P. Bruschi, N. Nizza, and M. Piotto, "A current-mode, dual slope, integrated capacitance-to-pulse duration converter," IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1884-1891, Sep. 2007.
F. Reverter and Ò. Casas, "A microcontroller-based interface circuit for lossy capacitive sensors," Meas. Sci. Technol., vol. 21, no. 6, p. 065203, May 2010.
M.-T. Tan, J. S. Chang, and Y.-C. Tong, "A process-independent threshold voltage inverter-comparator for pulse width modulation applications," in Proc. 6th IEEE Int. Conf. Electron., Circuits Syst. (ICECS), vol. 3. Sep. 1999, pp. 1201-1204.
Microfab Packaged Pressure Sensor Die E1.3N, accessed on Jun. 22, 2016. [Online]. Available: http:// www.microfab.de/mems/pressuresensors/pressuresensorpackageddie/
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.