World Health Organization, Cardiovascular diseases, Fact Sheet No. 317. [online]. Available: http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed on: Mar. 2013.
A. Hinman et al., Portable blood pressure recorder. Accuracy and preliminary use in evaluating intradaily variations in pressure, Amer. Heart J., vol. 63, pp. 663-668, 1962.
T. G. Pickering et al., Ambulatory blood-pressure monitoring, New Eng. J. Med., vol. 354, no. 22, pp. 2368-2374, 2006.
W.W. Nichols et al., McDonalds Blood Flow in Arteries, 6th ed. London, U.K.: Hodder, 2005.
D. Buxi et al., A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time, Physiol. Meas., vol. 36, no. 3, pp. R1-R26, 2015.
S. Puke et al., Blood pressure estimation from pulse wave velocity measured on the chest, in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 2013, vol. 2013, pp. 6107-6110.
J. Sola et al., Non-invasive and non-occlusive blood pressure estimation via a chest sensor, IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3505-3513, Dec. 2013.
W. Chen et al., Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration, Med. Biol. Eng. Comput., vol. 38, no. 5, pp. 569-574, 2000.
C. C. Y. Poon and Y. T. Zhang, Cuff-less and noninvasive measurements of arterial blood pressure by pulse transit time, in Proc. IEEE 27th Annu. Int. Conf. Eng. Med. Biol., 2005, pp. 5877-5880.
Y. L. Zheng et al., An armband wearable device for overnight and cuffless blood pressure measurement, IEEE Trans. Biomed. Eng., vol. 61, no. 7, pp. 2179-2186, Jul. 2014.
R. Mukkamala et al., Toward ubiquitous blood pressure monitoring via pulse transit time: Theory and practice, IEEE Trans. Biomed. Eng., vol. 62, no. 8, pp. 1879-1901, Aug. 2015.
B. M. McCarthy et al., An examination of calibration intervals required for accurately tracking blood pressure using pulse transit time algorithms, J. Human Hypertension, vol. 27, no. 12, pp. 744-750, 2013.
J. Sola et al., Ambulatory monitoring of the cardiovascular system: The role of pulse wave velocity in New Developments in Biomedical Engineering, D. Campolo, Ed. Rijeka, Croatia: Intech, 2010, pp. 391-424.
R. P. Lewis et al., A critical review of the systolic time intervals, Circulation, vol. 56, no. 2, pp. 146-158, 1977.
Y.-P. Hsu and D. J. Young, Skin-coupled personal wearable ambulatory pulsewave velocity monitoring system usingmicroelectromechanical sensors, IEEE Sens. J., vol. 14, no. 10, pp. 3490-3497, Oct. 2014.
J. Muehlsteff et al., Feasibility of pulse presence and pulse strength assessment during head-up tilt table testing using an accelerometer located at the carotid artery, in Proc. IEEE 36th Annu. Int. Conf. Eng. Med. Biol. Soc., 2014, pp. 894-897.
P. M. Nabeel et al., Magnetic plethysmograph transducers for local blood pulse wave velocity measurement, in Proc. IEEE 36th Annu. Int. Conf. Eng. Med. Biol. Soc., 2014, pp. 1953-1956.
D. Buxi et al., Cuffless blood pressure estimation using the carotid arterial pulse, in Proc. IEEE 37th Annu. Int. Conf. Eng. Med. Biol. Soc., 2015, pp. 5704-5707.
G. Zhang et al., Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure, J. Appl. Physiol. (1985), vol. 111, no. 6, pp. 1681-1686, 2011.
C. Li et al., A review on recent advances in doppler radar sensors for noncontact healthcare monitoring, IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 2046-2060, May 2013.
M. Zakrzewski, Methods for doppler radar monitoring of physiological signals, Ph.D. dissertation, Tampere Univ. Technol., Tampere, Finland, 2015.
R. J. Hall et al., Evaluation of posterior aortic wall echogram in diagnosis of mitral valve disease, Heart, vol. 41, no. 5, pp. 522-528, 1979.
T. Abraham and A. Pinheiro, Echocardiography. Amsterdam, The Netherlands: Elsevier, 2010, ch. 6.
J. A. Thijs et al., A comparison of continuous wave doppler radar to impedance cardiography for analysis of mechanical heart activity, in Proc. IEEE 27th Annu. Conf. Eng. Med. Biol., 2005, vol. 4, pp. 3482-3485.
F. Wright, Radiology of the Chest and Related Conditions. Boca Raton, FL, USA: CRC Press, 2001.
A. Droitcour, Non-contact measurement of heart and respiration rates with a single-chip microwave doppler radar, Ph.D. dissertation, Stanford Univ., Stanford, CA, USA, 2006.
O. Aardal et al., Physical working principles of medical radar, IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 1142-1149, Apr. 2013.
C. C. Johnson and A. W. Guy, Nonionizing electromagnetic wave effects in biological materials and systems, Proc. IEEE, vol. 60, no. 6, pp. 692-718, Jun. 1972.
J. C. Lin et al., Microwave apexcardiography, IEEE Trans. Microw. Theory Techn., vol. 27, no. 6, pp. 618-620, Jun. 1979.
J. Lin, Microwave Propagation in Biological Dielectrics With Application to Cardiopulmonary Interrogation. New York, NY, USA: IEEE Press, 1986, pp. 47-58.
J. Muehlsteff et al., The use of a two channel doppler radar sensor for the detection of heart motion phases, in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 2006, pp. 547-550.
G. Varotto and E. M. Staderini, On the UWB medical radars working principles, Int. J. UltraWideband Commun. Syst., vol. 2, no. 2, pp. 83-93, 2011.
O. Aardal et al., Detecting changes in the human heartbeat with on-body radar, in Proc. IEEE Radar Conf., 2013, pp. 1-6.
J. Muehlsteff et al., Ahandheld device for simultaneous detection of electrical and mechanical cardio-vascular activities with synchronized ECG and CW-doppler radar, in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 2007, pp. 5759-5762.
L. Yang and N. Bowler, Resonant frequency of a rectangular patch sensor covered with multilayered dielectric structures, IEEE Trans. Antennas Propag., vol. 58, no. 6, pp. 1883-1889, Jun. 2010.
S. Gabriel et al., The dielectric properties of biological tissues: II. Measurements in the frequency range 10 HZ to 20 GHZ, Phys. Med. Biol, vol. 41, pp. 2251-2269, 1996.
International Commission on Non-Ionizing Radiation Protection, Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz), Health Phys., vol. 74, no. 4, pp. 494-522, 1998.
A. Christ et al., The dependence of electromagnetic far-field absorption on body tissue composition in the frequency range from 300 MHZ to 6 GHZ, IEEE Trans.Microw. Theory Techn., vol. 54, no. 5, pp. 2188-2195, May 2006.
T. M. Ravi Shankar et al., The contribution of vessel volume change and blood resistivity change to the electrical impedance pulse, IEEE Trans. Biomed. Eng., vol. 32, no. 3, pp. 192-198, Mar. 1985.
E. M. Spinelli et al., AC-coupled front-end for biopotential measurements, IEEE Trans. Biomed. Eng., vol. 50, no. 3, pp. 391-395, Mar. 2003.
R. Gonzalez-Landaeta et al., Heart rate detection from plantar bioimpedance measurements, IEEE Trans. Biomed. Eng, vol. 55, no. 3, pp. 1163-1167, Mar. 2008.
J. Pan and W. J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng., vol. 32, no. 3, pp. 230-236, Mar. 1985.
J. Sola et al., Parametric estimation of pulse arrival time: A robust approach to pulsewave velocity, Physiol. Meas., vol. 30, no. 7, pp. 603-615, 2009.
A. Sherwood et al., Methodological guidelines for impedance cardiography, Psychophysiology, vol. 27, no. 1, pp. 1-23, 1990.
G. Cybulski et al., Stroke volume and systolic time intervals: Beat-tobeat comparison between echocardiography and ambulatory impedance cardiography in supine and tilted positions, Med. Biol. Eng. Comput., vol. 42, no. 5, pp. 707-711, 2004.
C. Li et al., The relationship between heart-carotid pulse transit time and carotid intima-media thickness in hypertensive patients, J. Human Hypertension, vol. 29, no. 11, 2015, pp. 663-668.
K. D. Reesink et al., Carotid artery pulse wave time characteristics to quantify ventriculoarterial responses to orthostatic challenge, J. Appl. Physiol., vol. 102, no. 6, pp. 2128-2134, 2007.
H. D. Hong and M. D. Fox, No touch pulse measurement by optical interferometry, IEEE Trans. Biomed. Eng., vol. 41, no. 11, pp. 1096-1099, Nov. 1994.
H. Boudoulas, Systolic time intervals, Eur. Heart J., vol. 11, no. suppl I, pp. 93-104, 1990.
G. Ning et al., Comparison of pulse wave velocity computed by different characteristic points, in Proc. Int. Assoc. Sci. Technol. Devlop., 2005, Art. no. 33540.
X. F. Teng and Y. T. Zhang, Continuous and noninvasive estimation of arterial blood pressure using a photoplethysmographic approach, in Proc. IEEE 25th Annu. Int. Conf. Eng. Med. Biol. Soc., 2003, vol. 4, pp. 3153-3156.
E. Hermeling, Local pulse wave velocity determination, Ph.D. dissertation, Univ. Maastricht, The Netherlands, 2009.
R. van Lien et al., Estimated preejection period (PEP) based on the detection of the R-wave and dZ/dt-min peaks does not adequately reflect the actual PEP across a wide range of laboratory and ambulatory conditions, Int. J .Psychophysiol., vol. 87, no. 1, pp. 60-69, 2013.
J. H. Houtveen et al., Effects of variation in posture and respiration on RSA and pre-ejection period, Psychophysiology, vol. 42, no. 6, pp. 713-719, 2005.
J. Sola et al., Chest pulse-wave velocity: A novel approach to assess arterial stiffness, IEEE Trans. Biomed. Eng., vol. 58, no. 1, pp. 215-223, Jan. 2011.
I. Romero et al., Robust beat detector for ambulatory cardiac monitoring, in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 2009, pp. 950-953.
A. D. Droitcour et al., Range correlation and I/Q performance benefits in single-chip silicon doppler radars for noncontact cardiopulmonary monitoring, IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838-848, Mar. 2004.
O. Aardal et al., Detecting changes in the human heartbeat with on-body radar, in Proc. Radar Conf., 2013, pp. 1-6.
C. S. Kim et al., Ballistocardiogram as proximal timing reference for pulse transit timemeasurement: Potential for cuffless blood pressure monitoring, IEEE Trans. Biomed. Eng., vol. 62, no. 11, pp. 2657-2664, Nov. 2015.
O. T. Inan et al., Ballistocardiography and seismocardiography: A review of recent advances, IEEE J. Biomed. Health Informat., vol. 19, no. 4, pp. 1414-1427, Jul. 2015.
M. Di Rienzo et al., Use of seismocardiogram for the beat-to-beat assessment of the pulse transit time: A pilot study, in Proc. IEEE Ann. Int. Conf. Eng. Med. Biol. Soc., 2015, pp. 7184-7187.
C. Ahlstrom et al., Noninvasive investigation of blood pressure changes using the pulse wave transit time: A novel approach in the monitoring of hemodialysis patients, J. Artif. Organs, vol. 8, no. 3, pp. 192-197, 2005.
J. Muehlsteff et al., Cuffless estimation of systolic blood pressure for short effort bicycle tests: The prominent role of the pre-ejection period, in Proc. IEEE Annu. Int. Conf. Eng. Med. Biol. Soc., 2006, vol. 1, pp. 5088-5092.
M. Y. Wong et al., An evaluation of the cuffless blood pressure estimation based on pulse transit time technique: A half year study on normotensive subjects, Cardiovasc. Eng., vol. 9, no. 1, pp. 32-38, 2009.
H. Gesche et al., Continuous blood pressure measurement by using the pulse transit time: Comparison to a cuff-based method, Eur. J. Appl. Physiol., vol. 112, no. 1, pp. 309-315, 2012.
M. Younessi Heravi et al., Continuous and cuffless blood pressure monitoring based on ECG and SpO2 signals by usingmicrosoft visual C sharp, J. Biomed. Phys. Eng., vol. 4, no. 1, pp. 27-32, 2014.
N. M. van Popele et al., Arterial stiffness as underlying mechanism of disagreement between an oscillometric blood pressure monitor and a sphygmomanometer, Hypertension, vol. 36, no. 4, pp. 484-488, 2000.
M. Zakrzewski et al., Comparison of center estimation algorithms for heart and respiration monitoring with microwave doppler radar, IEEE Sensors J., vol. 12, no. 3, pp. 627-634, Mar. 2012.
S. Brovoll et al., Time-lapse imaging of human heart motion with switched array UWB radar, IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 5, pp. 704-715, Oct. 2014.
F. Pfanner et al., Monitoring cardiac motion in CT using a continuous wave radar embedded in the patient table, Med. Phys., vol. 41, no. 8, 2014, Art. no. 081908.