Alkhatib, Z., Abts, A., Mavaro, A., Schmitt, L., and Smits, S. H. J. (2012). Lantibiotics: how do producers become self-protected? J. Biotechnol. 159, 145-154. doi: 10.1016/j.jbiotec.2012.01.032
Bayles, K. W. (2014). Bacterial programmed cell death: making sense of a paradox. Nat. Rev. Microbiol. 12, 63-69. doi: 10.1038/nrmicro3136
Beites, T., Oliveira, P., Rioseras, B., Pires, S. D. S., Oliveira, R., Tamagnini, P., et al. (2015). Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress. Sci. Rep. 5:12887. doi: 10.1038/srep12887
Bibb, M. (1996). 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142(Pt 6), 1335-1344. doi: 10.1099/13500872-142-6-1335
Chater, K. F. (2006). Streptomyces inside-out: a new perspective on the bacteria that provide us with antibiotics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 761-768. doi: 10.1098/rstb.2005.1758
Claessen, D., Rozen, D. E., Kuipers, O. P., Søgaard-Andersen, L., and van Wezel, G. P. (2014). Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies. Nat. Rev. Microbiol. 12, 115-124. doi: 10.1038/nrmicro3178
Darshan, N., and Manonmani, H. K. (2016). Prodigiosin inhibits motility and activates bacterial cell death revealing molecular biomarkers of programmed cell death. AMB Exp. 6:50. doi: 10.1186/s13568-016-0222-z
D'Costa, V. M., McGrann, K. M., Hughes, D. W., and Wright, G. D. (2006). Sampling the antibiotic resistome. Science 311, 374-377. doi: 10.1126/science.1120800
Fernández, M., and Sánchez, J. (2002). Nuclease activities and cell death processes associated with the development of surface cultures of Streptomyces antibioticus ETH 7451. Microbiology 148, 405-412. doi: 10.1099/00221287-148-2-405
Filippova, S. N., and Vinogradova, K. A. (2017). Programmed cell death as one of the stages of streptomycete differentiation. Microbiology 86, 439-454. doi: 10.1134/S0026261717040075
Floriano, B., and Bibb, M. (1996). afsR is a pleiotropic but conditionally required regulatory gene for antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 21, 385-396. doi: 10.1046/j.1365-2958.1996.6491364.x
Galm, U., Hager, M. H., Van Lanen, S. G., Ju, J., Thorson, J. S., and Shen, B. (2005). Antitumor antibiotics: bleomycin, enediynes, and mitomycin. Chem. Rev. 105, 739-758. doi: 10.1021/cr030117g
González-Pastor, J. E. (2011). Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol. Rev. 35, 415-424. doi: 10.1111/j.1574-6976.2010.00253.x
González-Pastor, J. E., Hobbs, E. C., and Losick, R. (2003). Cannibalism by sporulating bacteria. Science 301, 510-513. doi: 10.1126/science.1086462
Hopwood, D. A. (2007). How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them? Mol. Microbiol. 63, 937-940. doi: 10.1111/j.1365-2958.2006.05584.x
Huang, J., Lih, C. J., Pan, K. H., and Cohen, S. N. (2001). Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev. 15, 3183-3192. doi: 10.1101/gad.943401
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F., and Hopwood, D. A. (2017). Practical Streptomyces Genetics. Norwich: John Innes Foundation
Lee, D.-Y., and Rhee, G.-Y. (1999). Circadian rhythm in growth and death of Anabaena Flos-Aquae (cyanobacteria). J. Phycol. 35, 694-699. doi: 10.1046/j.1529-8817.1999.3540694.x
Luti, K. J., and Mavituna, F. 2011. Elicitation of Streptomyces coelicolor with dead cells of Bacillus subtilis and Staphylococcus aureus in a bioreactor increases production of undecylprodigiosin. Appl. Microbiol. Biotechnol. 90, 461-466. doi: 10.1007/s00253-010-3032-r2
Luti, K. J., and Mavituna, F. 2011. Streptomyces coelicolor increases the production of undecylprodigiosin when interacted with Bacillus subtilis. Biotechnol. Lett. 33, 113-118. doi: 10.1007/s10529-010-0401-y
Lyons, N. A., and Kolter, R. (2015). On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 24, 21-28. doi: 10.1016/j.mib.2014.12.007
Mak, S., Xu, Y., and Nodwell, J. R. (2014). The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol. Microbiol. 93, 391-402. doi: 10.1111/mmi.12689
Manteca, A., Fernández, M., and Sánchez, J. (2005). A death round affecting a young compartmentalized mycelium precedes aerial mycelium dismantling in confluent surface cultures of Streptomyces antibioticus. Microbiology 151, 3689-3697. doi: 10.1099/mic.0.28045-0
Méndez, C., Braña, A. F., Manzanal, M. B., and Hardisson, C. (1985). Role of substrate mycelium in colony development in Streptomyces. Can. J. Microbiol. 31, 446-450. doi: 10.1139/m85-083
Miguélez, E. M., Hardisson, C., and Manzanal, M. B. (1999). Hyphal death during colony development in Streptomyces antibioticus: morphological evidence for the existence of a process of cell deletion in a multicellular prokaryote. J. Cell Biol. 145, 515-525. doi: 10.1083/jcb.145.3.515
Miguélez, E. M., Hardisson, C., and Manzanal, M. B. (2000). Streptomycetes: a new model to study cell death. Int. Microbiol. 3, 153-158
Mo, S., Kim, J., and Oh, C.-H. (2013). Different effects of acidic pH shock on the prodiginine production in Streptomyces coelicolor M511 and SJM1 mutants. J. Microbiol. Biotechnol. 23, 1454-1459. doi: 10.4014/jmb.1307.07067
Montaner, B., and Pérez-Tomás, R. (2003). The prodigiosins: a new family of anticancer drugs. Curr. Cancer Drug Targets 3, 57-65. doi: 10.2174/1568009033333772
Morgenstern, A., Paetz, C., Behrend, A., and Spiteller, D. (2015). Divalent transition-metal-ion stress induces prodigiosin biosynthesis in Streptomyces coelicolor M145: formation of coeligiosins. Chemistry 21, 6027-6032. doi: 10.1002/chem.201405733
Nariya, H., and Inouye, M. (2008). MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55-66. doi: 10.1016/j.cell.2007.11.044
Ogawara, H. (2015). Penicillin-binding proteins in Actinobacteria. J. Antibiot. 68, 223-245. doi: 10.1038/ja.2014.148
Pérez-Tomás, R., Montaner, B., Llagostera, E., and Soto-Cerrato, V. (2003). The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol. 66, 1447-1452. doi: 10.1016/S0006-2952(03)00496-9
Pérez-Tomás, R., and Viñas, M. (2010). New insights on the antitumoral properties of prodiginines. Curr. Med. Chem. 17, 2222-2231. doi: 10.2174/092986710791331103
Rigali, S., Nothaft, H., Noens, E. E., Schlicht, M., Colson, S., Müller, M., et al. (2006). The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61, 1237-1251. doi: 10.1111/j.1365-2958.2006.05319.x
Rigali, S., Titgemeyer, F., Barends, S., Mulder, S., Thomae, A. W., Hopwood, D. A., et al. (2008). Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 9, 670-675. doi: 10.1038/embor.2008.83
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Available at: https://www.cabdirect.org/cabdirect/abstract/19901616061 [accessed December 26, 2017]
Schäberle, T. F., Orland, A., and König, G. M. (2014). Enhanced production of undecylprodigiosin in Streptomyces coelicolor by co-cultivation with the corallopyronin A-producing myxobacterium, Corallococcus coralloides. Biotechnol. Lett. 36, 641-648. doi: 10.1007/s10529-013-1406-r0
Shapiro, J. A. (1998). Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52, 81-104. doi: 10.1146/annurev.micro.52.1.81
Stankovic, N., Senerovic, L., Ilic-Tomic, T., Vasiljevic, B., and Nikodinovic-Runic, J. (2014). Properties and applications of undecylprodigiosin and other bacterial prodigiosins. Appl. Microbiol. Biotechnol. 98, 3841-3858. doi: 10.1007/s00253-014-5590-1
Sugiyama, M. (2015). Structural biological study of self-resistance determinants in antibiotic-producing actinomycetes. J. Antibiot. 68, 543-550. doi: 10.1038/ja.2015.32
Sun, J., Kelemen, G. H., Fernández-Abalos, J. M., and Bibb, M. J. (1999). Green fluorescent protein as a reporter for spatial and temporal gene expression in Streptomyces coelicolor A3(2). Microbiology 145(Pt 9), 2221-2227. doi: 10.1099/00221287-145-9-2221
Surette, M. D., and Wright, G. D. (2017). Lessons from the environmental antibiotic resistome. Annu. Rev. Microbiol. 71, 309-329. doi: 10.1146/annurev-micro-090816-093420
Takano, E., Gramajo, H. C., Strauch, E., Andres, N., White, J., and Bibb, M. J. (1992). Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase-dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6, 2797-2804. doi: 10.1111/j.1365-2958.1992.tb01459.x
Tenconi, E., Guichard, P., Motte, P., Matagne, A., and Rigali, S. (2013). Use of red autofluorescence for monitoring prodiginine biosynthesis. J. Microbiol. Methods 93, 138-143. doi: 10.1016/j.mimet.2013.02.012
Tenconi, E., Jourdan, S., Motte, P., Virolle, M.-J., and Rigali, S. (2012). Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner. Antonie Van Leeuwenhoek 102, 425-433. doi: 10.1007/s10482-012-9763-r6
Tenconi, E., and Rigali, S. (2018). Self-resistance mechanisms to DNA-damaging antitumor antibiotics in actinobacteria. Curr. Opin. Microbiol. 45, 100-108. doi: 10.1016/j.mib.2018.03.003
Tenconi, E., Urem, M., Swiatek-Polatynska, M. A., Titgemeyer, F., Muller, Y. A., van Wezel, G. P., et al. (2015). Multiple allosteric effectors control the affinity of DasR for its target sites. Biochem. Biophys. Res. Commun. 464, 324-329. doi: 10.1016/j.bbrc.2015.06.152
Tomasz, A. (2006). Microbiology. Weapons of microbial drug resistance abound in soil flora. Science 311, 342-343. doi: 10.1126/science.1123982
van Wezel, G. P., White, J., Hoogvliet, G., and Bibb, M. J. (2000). Application of redD, the transcriptional activator gene of the undecylprodigiosin biosynthetic pathway, as a reporter for transcriptional activity in Streptomyces coelicolor A3(2) and Streptomyces lividans. J. Mol. Microbiol. Biotechnol. 2, 551-556
White, J., and Bibb, M. (1997). bldA dependence of undecylprodigiosin production in Streptomyces coelicolor A3(2) involves a pathway-specific regulatory cascade. J. Bacteriol. 179, 627-633. doi: 10.1128/jb.179.3.627-633.1997
Williamson, N. R., Fineran, P. C., Gristwood, T., Chawrai, S. R., Leeper, F. J., and Salmond, G. P. C. (2007). Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol. 2, 605-618. doi: 10.2217/17460913.2.6.605
Williamson, N. R., Fineran, P. C., Leeper, F. J., and Salmond, G. P. C. (2006). The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4, 887-899. doi: 10.1038/nrmicro1531
Wright, G. D. (2012). The origins of antibiotic resistance. Handb. Exp. Pharmacol 211, 13-30. doi: 10.1007/978-3-642-28951-4_2
Yang, K., Chen, Q., Zhang, D., Zhang, H., Lei, X., Chen, Z., et al. (2017). The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa. Sci. Rep. 7:7750. doi: 10.1038/s41598-017-08132-5
Zhang, H., Wang, H., Zheng, W., Yao, Z., Peng, Y., Zhang, S., et al. (2017). Toxic effects of prodigiosin secreted by Hahella sp. KA22 on Harmful Alga Phaeocystis globosa. Front. Microbiol. 8:999. doi: 10.3389/fmicb.2017.00999
Zhou, L., Li, Y., Li, Y., and Wu, D. (2005). Spatio-temporal expression of the pathway-specific regulatory gene redD in S. coelicolor. J. Zhejiang Univ. Sci. B 6, 464-469. doi: 10.1631/jzus.2005.B0464