Article (Scientific journals)
Construction of regular languages and recognizability of polynomials
Rigo, Michel
2002In Discrete Mathematics, 254 (1-3), p. 485-496
Peer Reviewed verified by ORBi
 

Files


Full Text
polynomial.pdf
Author preprint (230.98 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
numeration system; recognizability; regular language; complexity function
Abstract :
[en] A generalization of numeration systems in which NI is recognizable by finite automata can be obtained by describing a lexicographically ordered infinite regular language. We show that if P is an element of Q[x] is a polynomial such that P(N) subset of N then there exists a numeration system in which the set of representations of P(N) is regular. The main issue is to construct a regular language with a complexity function equals to P(n + 1) - P(n) for n large enough. (C) 2002 Elsevier Science B.V. All rights reserved.
Disciplines :
Mathematics
Author, co-author :
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
Construction of regular languages and recognizability of polynomials
Publication date :
10 June 2002
Journal title :
Discrete Mathematics
ISSN :
0012-365X
eISSN :
1872-681X
Publisher :
Elsevier Science Bv, Amsterdam, Netherlands
Volume :
254
Issue :
1-3
Pages :
485-496
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 10 December 2008

Statistics


Number of views
56 (6 by ULiège)
Number of downloads
1 (0 by ULiège)

Scopus citations®
 
9
Scopus citations®
without self-citations
3
OpenCitations
 
7
OpenAlex citations
 
14

Bibliography


Similar publications



Contact ORBi