Article (Scientific journals)
Unsteady Lifting Line Theory Using theWagner Function for the Aerodynamic and Aeroelastic Modeling of 3D Wings
Boutet, Johan; Dimitriadis, Grigorios
2018In Aerospace, 5 (3), p. 92
Peer Reviewed verified by ORBi
 

Files


Full Text
51 aerospace-05-00092.pdf
Publisher postprint (2.18 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Unsteady aerodynamics; Finite wings; Wagner theory; Lifting line theory; Aeroelasticity
Abstract :
[en] A method is presented to model the incompressible, attached, unsteady lift and pitching moment acting on a thin three-dimensional wing in the time domain. The model is based on the combination of Wagner theory and lifting line theory through the unsteady Kutta–Joukowski theorem. The results are a set of closed-form linear ordinary differential equations that can be solved analytically or using a Runge–Kutta–Fehlberg algorithm. The method is validated against numerical predictions from an unsteady vortex lattice method for rectangular and tapered wings undergoing step or oscillatory changes in plunge or pitch. Further validation is demonstrated on an aeroelastic test case of a rigid rectangular finite wing with pitch and plunge degrees of freedom.
Disciplines :
Aerospace & aeronautics engineering
Author, co-author :
Boutet, Johan ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Dimitriadis, Grigorios  ;  Université de Liège - ULiège > Département d'aérospatiale et mécanique > Interactions Fluide-Structure - Aérodynamique expérimentale
Language :
English
Title :
Unsteady Lifting Line Theory Using theWagner Function for the Aerodynamic and Aeroelastic Modeling of 3D Wings
Publication date :
2018
Journal title :
Aerospace
eISSN :
2226-4310
Publisher :
MDPI, Basel, Switzerland
Special issue title :
Special Issue on Aeroelasticity
Volume :
5
Issue :
3
Pages :
92
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 30 August 2018

Statistics


Number of views
190 (15 by ULiège)
Number of downloads
180 (8 by ULiège)

Scopus citations®
 
32
Scopus citations®
without self-citations
30
OpenCitations
 
20
OpenAlex citations
 
30

Bibliography


Similar publications



Contact ORBi