Article (Scientific journals)
Independent Component Analysis and Statistical Modelling for the Identification of Metabolomics Biomarkers in 1H-NMR Spectroscopy
Feraud, Baptiste; Rousseau, Réjane; De Tullio, Pascal et al.
2017In Journal of Biometrics and Biostatistics, 8 (4), p. 1-8
Peer Reviewed verified by ORBi
 

Files


Full Text
independent-component-analysis-and-statistical-modelling-for-theidentification-of-metabolomics-biomarkers-in-1hnmr-spectroscopy-2155-6180-1000367.pdf
Publisher postprint (781.98 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
metabolomics; NMR; ICA
Abstract :
[en] In order to maintain life, living organism’s product and transform small molecules called metabolites. Metabolomics aims at studying the development of biological reactions resulting from a contact with a physio-pathological stimulus, through these metabolites. The 1H-NMR spectroscopy is widely used to graphically describe a metabolite composition via spectra. Biologists can then confirm or invalidate the development of a biological reaction if specific NMR spectral regions are altered from a given physiological situation to another. However, this pro-cess supposes a preliminary identification step which traditionally consists in the study of the two first components of a Principal Component Analysis (PCA). This paper presents a new methodology in two main steps providing knowledge on specific 1H-NMR spectral areas via the identification of biomarkers and via the visualization of the effects caused by some external changes. The first step implies Independent Component Analysis (ICA) in order to decompose the spectral data into statistically independent components or sources of information. The in-dependent (pure or composite) metabolites contained in bio fluids are discovered through the sources, and their quantities through mixing weights. Specific questions related to ICA like the choice of the number of components and their ordering are discussed. The second step consists in a statistical modelling of the ICA mixing weights and introduces statistical hypothesis tests on the parameters of the estimated models, with the objective of selecting sources which present biomarkers (or significantly fluctuating spectral regions). Statistical models are considered here for their adaptability to different possible kinds of data or contexts. A computation of contrasts which can lead to the visualization of changes on spectra caused by changes of the factor of interest is also proposed. This methodology is innovative because multi-factors studies (via the use of mixed models) and statistical confirmations of the factors effects are allowed together. 
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Feraud, Baptiste;  Université Catholique de Louvain - UCL > Statistique
Rousseau, Réjane;  Arlenda
De Tullio, Pascal  ;  Université de Liège - ULiège > Département de pharmacie > Chimie pharmaceutique
Verleysen, Michel;  Université Catholique de Louvain - UCL > Machine Learning group
Govaerts, Bernadette;  Université Catholique de Louvain - UCL > Statistique (ISBA)
Language :
English
Title :
Independent Component Analysis and Statistical Modelling for the Identification of Metabolomics Biomarkers in 1H-NMR Spectroscopy
Publication date :
2017
Journal title :
Journal of Biometrics and Biostatistics
eISSN :
2155-6180
Publisher :
OMICS International, Hyderabad, India
Volume :
8
Issue :
4
Pages :
1-8
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 28 August 2018

Statistics


Number of views
113 (1 by ULiège)
Number of downloads
2 (1 by ULiège)

OpenCitations
 
1
OpenAlex citations
 
1

Bibliography


Similar publications



Contact ORBi