Article (Scientific journals)
Multi-timescale drowsiness characterization based on a video of a driver’s face
Massoz, Quentin; Verly, Jacques; Van Droogenbroeck, Marc
2018In Sensors, 18 (9), p. 2801
Peer Reviewed verified by ORBi
 

Files


Full Text
Massoz2018MultiTimescale.pdf
Publisher postprint (1.49 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
drowsiness; driver monitoring; multi-timescale; eye closure dynamics; psychomotor vigilance task; reaction time; convolution neural network
Abstract :
[en] Drowsiness is a major cause of fatal accidents, in particular in transportation. It is therefore crucial to develop automatic, real-time drowsiness characterization systems designed to issue accurate and timely warnings of drowsiness to the driver. In practice, the least intrusive, physiology-based approach is to remotely monitor, via cameras, facial expressions indicative of drowsiness such as slow and long eye closures. Since the system’s decisions are based upon facial expressions in a given time window, there exists a trade-off between accuracy (best achieved with long windows, i.e., at long timescales) and responsiveness (best achieved with short windows, i.e., at short timescales). To deal with this trade-off, we develop a multi-timescale drowsiness characterization system composed of four binary drowsiness classifiers operating at four distinct timescales (5 s, 15 s, 30 s, and 60 s) and trained jointly. We introduce a multi-timescale ground truth of drowsiness, based on the reaction times (RTs) performed during standard Psychomotor Vigilance Tasks (PVTs), that strategically enables our system to characterize drowsiness with diverse trade-offs between accuracy and responsiveness. We evaluated our system on 29 subjects via leave-one-subject-out cross-validation and obtained strong results, i.e., global accuracies of 70%, 85%, 89%, and 94% for the four classifiers operating at increasing timescales, respectively.
Research Center/Unit :
Montefiore Institute - Montefiore Institute of Electrical Engineering and Computer Science - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Massoz, Quentin ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Exploitation des signaux et images
Verly, Jacques ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Dép. d'électric., électron. et informat. (Inst.Montefiore)
Van Droogenbroeck, Marc  ;  Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Télécommunications
Language :
English
Title :
Multi-timescale drowsiness characterization based on a video of a driver’s face
Publication date :
25 August 2018
Journal title :
Sensors
ISSN :
1424-8220
eISSN :
1424-3210
Publisher :
Multidisciplinary Digital Publishing Institute (MDPI), Switzerland
Special issue title :
Special Issue: Perception Sensors for Road Applications
Volume :
18
Issue :
9
Pages :
2801
Peer reviewed :
Peer Reviewed verified by ORBi
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
Available on ORBi :
since 23 August 2018

Statistics


Number of views
147 (33 by ULiège)
Number of downloads
188 (7 by ULiège)

Scopus citations®
 
18
Scopus citations®
without self-citations
17
OpenCitations
 
13
OpenAlex citations
 
17

Bibliography


Similar publications



Contact ORBi